Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:29:08.787Z Has data issue: false hasContentIssue false

Radiochemical Synthesis of Au/Iron-oxide Composite Nanoparticles Using PEG

Published online by Cambridge University Press:  01 February 2011

Satoshi Seino
Affiliation:
[email protected], Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan, +81-6-6879-7887, +81-6-6879-7887
Takuya Kinoshita
Affiliation:
KINOSHITA takuya , Osaka Prefecture University, Graduate School of Engineering, 1-1 Gakuencho, Sakai,, Osaka, 599-8531, Japan
Juinichi Iida
Affiliation:
[email protected], Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
Yujin Shibata
Affiliation:
[email protected], Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
Takashi Nakagawa
Affiliation:
Takashi Nakagawa , Tokyo Institute of Technology, Graduate School of Science and Engineering, 2-12-1 Ookayama,Meguro-ku, Tokyo, 152-8552, Japan
Koji Ueno
Affiliation:
[email protected], Japan Electron Beam Irradiation Service Co. Ltd., 5-3 Ozushimacho, Izumiotsu, Osaka, 595-0074, Japan
Takao A Yamamoto
Affiliation:
[email protected], Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
Get access

Abstract

Composite nanoparticles consisting of gold and iron-oxide were radiochemically synthesized in aqueous solution systems by using polyethylene glycols. The gold particles with average diameter of 3 nm were firmly immobilized on the surface of the support iron-oxide nanoparticles. The composite nanoparticles specifically adsorbed sulfur-containing amino acids by a Au-S bonding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Häfeli, U. O., Pauer, G. J., J. Magn. Magn. Mater., 194, 7682 (1999).Google Scholar
2. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J., J. Phys. D: Appl. Phys., 36, R167181 (2003).Google Scholar
3. Nishimura, K., Hasegawa, M., Ogura, Y., Nishi, T., Kataoka, K., Handa, H., Abe, M., J. Appl. Phys. 91, 8555 (2002).Google Scholar
4. Mornet, S., Vasseur, S., Grasset, F. & Duguet, E., J. Mater. Chem., 14, 21612175 (2004).Google Scholar
5. Ito, A., Shinkai, M., Honda, H. & Kobayashi, T., J. Biosci. Bioeng, 100, 111 (2005).Google Scholar
6. Gupta, A. K., Gupta, M., Biomaterials, 26, 39954021 (2005).Google Scholar
7. Gref, R., Dombb, A., Quelled, P., Blunk, T., Miillerd, R.H., Verbavatz, J.M. and Langerf, R., Advanced Drug Delivery Reviews 16, 215233 (1995).Google Scholar
8. Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y. and Jon, S., J. AM. CHEM. SOC., 128, 73837389 (2006).Google Scholar
9. Caruntu, D., Cushing, B. L., Caruntu, G. and O'Connor, C. J., Chem. Mater. 17, 33983402 (2005).Google Scholar
10. Ban, Z., Barnakov, Y. A., Li, F., Golub, V. O. and O'Connor, C. J., J. Mater. Chem., 15, 46604662 (2005).Google Scholar
11. Wang, L., Luo, J., Fan, Q., Suzuki, M., Suzuki, I. S., Engelhard, M. H., Lin, Y., Kim, N., Wang, J. Q., and Zhong, C. J., J. Phys. Chem. B, 109, 2159321601 (2005)Google Scholar
12. Chen, M., Yamamuro, S., Farrell, D., and Majeticha, S. A., J. Appl. Phy., 93, 7551 (2003)Google Scholar
13. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Strhoff, J. J., Nature, 382, 607609 (1996).Google Scholar
14. Daniel, M. C. and Astruc, D., Chem. Rev. 104: 293346 (2004).Google Scholar
15. Seino, S., Kinoshita, T., Otome, Y., Okitsu, K., Nakagawa, T. and Yamamoto, T. A., Chem. Lett., 32, 690691 (2003).Google Scholar
16. Seino, S., Kinoshita, T., Otome, Y., Maki, T., Nakagawa, T., Okitsu, K., Mizukoshi, Y., Nakayama, T., Sekino, T., Niihara, K., Yamamoto, T.A., Scripta Materialia 51, 467472 (2004).Google Scholar
17. Kinoshita, T., Seino, S., Mizukoshi, Y., Nakagawa, T., Yamamoto, T. A. Journal of Magn. and Magn. Mater., 311 255258 (2007).Google Scholar
18. Seino, S., Kusunose, T., Sekino, T., Kinoshita, T., Nakagawa, T., Kakimi, Y., Kawabe, Y., Iida, J., Yamamoto, T. A. and Mizukoshi, Y., J. Appl. Phys., 99, 08H101 (2006).Google Scholar
19. Niemeyer, C. M., Mirkin, C. A., Nanobiotechnology (WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, 2004) p.36 Google Scholar
20. Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y., Jon, S., J. Am. Chem. Soc., 128, 73837389 (2006).Google Scholar
21. Belloni, J., Catalysis Today, 113, 141156 (2006).Google Scholar
22. Seino, S., Kinoshita, T., Nakagawa, T., Kojima, T., Taniguchi, R., Okuda, S. and Yamamoto, T. A., J. Nanoparticle Res., 10, 10711076 (2008).Google Scholar