Published online by Cambridge University Press: 16 February 2011
Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavyion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550°C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from 0 to 5 dpa) and temperature (from 175 to about 350°C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 8 at% after irradiation doses to 10 dpa at an intermediate temperature of 325°C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutronirradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements.