Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T22:41:33.446Z Has data issue: false hasContentIssue false

Radiation Resistance of the Natural Microbial Population in Buffer Materials

Published online by Cambridge University Press:  15 February 2011

S. Stroes-Gascoyne
Affiliation:
AECL Research, Whiteshell Laboratories, Pinava, Manitoba, Canada ROB 1L0.
L. M. Lucht
Affiliation:
AECL Research, Whiteshell Laboratories, Pinava, Manitoba, Canada ROB 1L0.
J. Borsa
Affiliation:
AECL Research, Whiteshell Laboratories, Pinava, Manitoba, Canada ROB 1L0.
T. L. Delaney
Affiliation:
AECL Research, Whiteshell Laboratories, Pinava, Manitoba, Canada ROB 1L0.
S. A. Haveman
Affiliation:
AECL Research, Whiteshell Laboratories, Pinava, Manitoba, Canada ROB 1L0.
C. J. Hamon
Affiliation:
AECL Research, Whiteshell Laboratories, Pinava, Manitoba, Canada ROB 1L0.
Get access

Abstract

The radiation sensitivity of naturally occurring microorganisms in buffer materials vas investigated as veil as the sensitivity of Bacillus subtilis spores and Acinetobacter radioresistens in a buffer matrix. The D10 values obtained in our radiation experiments varied from 0.34 to 1.68 kGy and it vas calculated that the surface of a nuclear fuel vaste container vould be sterilized in 9 to 33 d after emplacement, depending on the type of container, and the initial bioburden. This suggests that formation of biofilms and microbially influenced corrosion vould not be of concern for some time after emplacement. The results also indicated that sterilization throughout a 25 cm thick buffer layer is unlikely and that repopulation of the container surface after some time is a possibility, depending on the mobility of microbes in compacted buffer material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dormuth, K.W. and Gillespie, P.A., Atomic Energy of Canada Limited Report, AECL-10183 (1990).Google Scholar
2. Simmons, G.R. and Baumgartner, P., Atomic Energy of Canada Limited Report, AECL-10715, COG–93–5 (1994).Google Scholar
3. Stroes-Gascoyne, S. and West, J.M., Atomic Energy of Canada Limited Report, AECL-10808, C0G–93–54 (1994).Google Scholar
4. Schutz, R.W., Materials Performance 30, 5861 (1991).Google Scholar
5. Pope, D.H., Duquette, D., Vayner, P.C. Jr., Johannes, A.H. and Freeman, A., Materials Technology Institute of the Chemical Process Industries, MIT Publication 13, Second Edition, St. Louis, MD.Google Scholar
6. Little, B., Wagner, P. and Mansfeld, F., International Materials Review 36. 253272 (1991).Google Scholar
7. Wackett, L.P., Orme-Johnson, W.H. and Walsh, C.T., In: Metal Ions and Bacteria (Beveridge, T.S and Doyle, R.J., editors), John Viley and Sons, New York, 165206 (1989).Google Scholar
8. Mansfeld, F. and Little, B., Corrosion Science 32, 247272 (1991).Google Scholar
9. Johnson, L.H., LeNeveu, D.M., Shoesmith, D.W., Oscarson, D.W., Gray, M.N., Lemire, R.J. and Garisto, N.C., Atomic Energy of Canada Limited Report AECL-10714, COG–93–04 (1994).Google Scholar
10. McNeil, M.B., Jones, J.M. and Little, B., Corrosion 47, 674677 (1991).Google Scholar
11. Videla, H.A., Gomez de Saravla, S.G. and de Mele, M.F.L., Corrosion ‘89 Paper 185 (New Orleans, GA), National Association of Corrosion Engineers, Houston TX (1989).Google Scholar
12. Syrett, B.C., Corrosion Science 21, 187209 (1981).Google Scholar
13. Swedish Corrosion Institute, Report for the Swedish Nuclear Fuel Supply Company, SKBF-KBS-TR–83–24 (1983).Google Scholar
14. Geesey, G., Centre for Nuclear Waste Regulatory Analyses, San Antonio, TX, CNVRA 93–014 (1993).Google Scholar
15. King, F., LeNeveu, D.M. and Jobe, D.J., Mat. Res. Soc. Symp. Proc, 333. 901904 (1994).Google Scholar
16. Dixon, D.A., Hnatiw, D.S. and Kohle, C.L., Atomic Energy of Canada Limited Technical Record TR–575 (COG 92–133) (1992).Google Scholar
17. Gascoyne, M. and Kamineni, D.C., Atomic Energy of Canada Limited Technical Record TR-516 (COG-92–24) (1992).Google Scholar
18. Gascoyne, M. and Kamineni, D.C., Proc. IAH 24th Congress on “Hydrology of Hard Rocks”, Oslo, Norway, June 28-July 2 (1993).Google Scholar
19. Stroes-Gascoyne, S., Gascoyne, M., Hamon, C.J., Jain, D. and Vilks, P., MRS Symp. Proc. 333 (Scientific Basis for Nuclear Vaste Management), 693698 (1994).Google Scholar
20. Oscarson, D.W. and Dixon, D.A., Atomic Energy of Canada Limited Report, AECL–9891 (1989).Google Scholar
21. Balkwill, D.L. and Ghiorse, W.C., Appl. Environ. Microbiol. 50, 580588 (1985).Google Scholar
22. Reasoner, D.J. and Geldreich, E.E., Appl. Environ. Microbiol. 50, 17 (1985).Google Scholar
23. Difco Manual 10th Edition, Difco Laboratories, Detroit (1984).Google Scholar
24. Lucht, L.M., Saunders, C.B., Barnard, J.W., Borsa, J. and Smyth, D.L., submitted to J. Radiation Sterilization (1994).Google Scholar
25. Tallentire, A., Radiat. Phys. Chem. 15, 8389 (1980).Google Scholar
26. Ley, F.J., Int. J. Appl. Rad. Isotopes 14, 3841 (1963).Google Scholar