Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:47:26.695Z Has data issue: false hasContentIssue false

Radiation Induced Amorphization in YBa2 Cu3O7 and GdBa2 Cu3O7 Superconductors

Published online by Cambridge University Press:  25 February 2011

Don M. Parkin
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, NM 87545.
Michael Nastasii
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The response of YBa2Cu3O7 and GdBa2Gu3O7 high temperature superconductors to particle irradiation is examined. Both ion and electron irradiations have been shown to first produce an orthorhombic-to-tetragonal transformation at relatively low doses followed by a tetragonal-to-amorphous transformation at doses roughly a factor of 10 higher. Analysis of the displacement stoichiometry that results from 120, 300, and 1000 keV electron irradiations, 400, and 500 keV O irradiations, and 300 keV helium irradiations indicate that the orthorhombic-to-tetragonal transformation is driven by O atom displacements either alone or in the presence of metal atom displacements and that the transformation to the amorphous phase is driven by displacements on the Y, Gd or other rare earth atom site.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review see Parkin, D. M., Met. Trans., to be published.Google Scholar
2. Clark, G. J., Marwick, A. D., LeGoues, F. K., Laibowitz, R. B., Koch, R., and Madakson, P., Nucl. Instrum. Methods B 32, 405 (1988).Google Scholar
3. Nastasi, M., Parkin, D. M., Zocco, T. G., Koike, J., and Okamoto, P. R.. Appl. Phys. Lett. 53, 1326 (1988).Google Scholar
4. Egner, B., Geerk, J., Li, H. C., Linker, G., Meyer, O., and Strehlau, B., Jpn. J. Appl. Phys. 26, (Supp. 26-3), 2141 (1987).10.7567/JJAPS.26S3.2141Google Scholar
5. Murakami, K., Eryer, O., Takita, K., and Masuda, K., Jpn. J. Appl. Phys. 26, L1731 (1987).10.1143/JJAP.26.L1731Google Scholar
6. Clark, G. J., LeCoues, F. K., Marwick, A. D., Laibowitz, R. B., and Koch, R.. Appl. Phys. Lett. 51, 1462 (1987).10.1063/1.98658Google Scholar
7. Mitchell, T. E., Roy, T., Schwarz, R. B., Smith, J. F., and Wohlleben, D., J. Electron Microsc. Tech. 8, 317 (1988).10.1002/jemt.1060080311Google Scholar
8. Kirk, M. A., Baker, M. C., Liu, J. Z., Lam, D. J., and Weber, H. W., in High Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Materials Research Society Proceedings 99, Pittsburgh, PA 1988) pp. 209.Google Scholar
9. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, Vol.1 of The Stopping and Ranges of Ions in Matter, edited by Zeigler, J. F. (Permagon, New York, 1985).Google Scholar
10. Xiong, G. C., Weschenfelder, F., Meyer, O., Linker, G., Li, H. C.. and Geerk, J., HTSCM2S-Interlaken, in press.Google Scholar