Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:20:49.261Z Has data issue: false hasContentIssue false

Radiation Effects Of Vacuum Ultraviolet Laser Photons on Silicon Dioxide

Published online by Cambridge University Press:  15 February 2011

K. Kurosawa
Affiliation:
Electrical & Computer Engineering Dept., University of Toronto, Toronto, Canada M5S 3G4 Department of Electrical Engineering, University of Miyazaki, Miyazaki 889-21, Japan, [email protected]
P. R. Herman
Affiliation:
Electrical & Computer Engineering Dept., University of Toronto, Toronto, Canada M5S 3G4
E. Z. Kurmaev
Affiliation:
Institute of Metal Physics, Russian Academy of Science, Yekaterinburg, GSP-170, Russia
S. N. Shamin
Affiliation:
Institute of Metal Physics, Russian Academy of Science, Yekaterinburg, GSP-170, Russia
V. E. Galakhov
Affiliation:
Institute of Metal Physics, Russian Academy of Science, Yekaterinburg, GSP-170, Russia
Y. TakigawA
Affiliation:
Solid State Electronics, Osaka Electro-Communication University, Neyagawa, 572, Japan
W. Sasaki
Affiliation:
Department of Electrical Engineering, University of Miyazaki, Miyazaki 889-21, Japan, [email protected]
A. Yokotani
Affiliation:
Electrical & Computer Engineering Dept., University of Toronto, Toronto, Canada M5S 3G4
Get access

Abstract

The argon excimer laser provides 9.8-eV photons that readily surmount the electronic bandgap energy of SiO2 (∼9.0 eV), directly generating excitons in a single-photon absorption process. We have shown by Si L2,3 (Si 3s→2p) X-ray emission spectroscopy, Si 2p X-ray photoelectron spectroscopy and Raman spectroscopy that this absorption process is responsible for silicon precipitation in the silica. The X-ray emission studies further show that the silicon precipitates are crystalline, forming in highest concentration in 120–230 nm layer beneath the laserirradiated surface. Silicon precipitation was not observed on samples irradiated with 146-nm krypton excimer radiation due to a smaller 8.5-eV photon energy that is below the silica bandgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Griscom, D. L., J. Non-Crystal. Solids 73, 51 (1985).Google Scholar
2. Stathis, J. H.and Kastner, M. A., Phys. Rev. B29, 7079 (1984).Google Scholar
3. Tsai, T. E.and Griscom, D. J., Phys. Rev. Lett. 67, 2517 (1991).Google Scholar
4. DiStefano, T. H.and Eastman, D. E., Solid State Commun. 9, 2259 (1971).Google Scholar
5. Kurosawa, K., Takigawa, Y., Okuda, M., Fujiwara, E., Yoshida, K., and Kato, Y., IEEE J. Quantum Electron. 61, 71 (1991).Google Scholar
6. Kurmaev, E. Z., Fedorenko, V. V., Shamin, S. N., and Postnikov, A. V., Physica Scripta T41, 288 (1992).Google Scholar
7. Galakhov, V. R., Kurmaev, E. Z., Shamin, S. N., Elokhina, L. V., and Yarmoshenko, Yu. M., Appl. Surf. Scien. 72, 73 (1993).Google Scholar
8. Kurmaev, E. Z., Shamin, S. N., Dolgih, V. E., Kurosawa, K., Nakamae, K., Takigawa, Y., Kameyama, A., Yokotani, A., and Sasaki, W., Jpn. J. Appl. Phys. 33, L1549 (1994).Google Scholar
9. Phillip, H. R., in Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic Press, Orlamdo, FL, 1985), p.749.Google Scholar
10. Feldman, C., Phys. Rev. Lett. 6, 2335 (1991).Google Scholar
11. Yakowitz, H.and Newburg, D. N., SEM-1976 Research Institute, Chicago, III. (1976) p. 151.Google Scholar