Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:36:19.953Z Has data issue: false hasContentIssue false

Radial Junction Architecture: A New Approach to Stable and Highly Efficient Silicon Thin Film Solar Cells

Published online by Cambridge University Press:  08 October 2015

S. Misra
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France.
M. Foldyna
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France.
I. Florea
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France.
L. Yu
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France. School of Electronics Science and Engineering, Nanjing University, 210093, Nanjing, People’s Republic of China.
P. Roca i Cabarrocas
Affiliation:
LPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France.
Get access

Abstract

Incorporation of properly designed nanostructures in solar cells improves light trapping and consequently their power conversion efficiencies. Due to its unique structure, a silicon nanowire (SiNW) matrix provides excellent light trapping and thus offers a promising approach for cost-effective, stable and efficient silicon thin film photovoltaics. Moreover, by decoupling the light absorption and carrier collection directions, radial junction solar cells built around the SiNWs allow the use of very thin active layers. As a matter of fact, radial PIN junctions with 9.2% power conversion efficiency have already been demonstrated on glass substrates with only 100 nm thick intrinsic hydrogenated amorphous silicon layers. The most straightforward way to further improve the short circuit current density is to use an active layer with a lower band gap. In this work, the performances of devices with two different low band gap materials, e.g., hydrogenated microcrystalline silicon (μc-Si:H) and hydrogenated amorphous silicon germanium alloy (a-SiGe:H) are presented. To the best of our knowledge, this is the first demonstration of a-SiGe:H radial junction solar cell.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Misra, S., Yu, L., Chen, W., Foldyna, M. and Roca i Cabarrocas, P., Journal of Physics D: Applied Physics, 47, p. 393001, 2014.CrossRefGoogle Scholar
Garnett, E. and Yang, P., Nano Letters, vol. 10 (3), pp. 10821087, 2010.CrossRefGoogle Scholar
Naughton, M. J., Kempa, K., Ren, Z. F., Gao, Y., Rybczynski, J., Argenti, N., Gao, W., Wang, Y., Peng, Y., Naughton, J. R., McMahon, G., Paudel, T., Lans, Y. C., Burns, M. J., Shepard, A., Clary, M., Ballif, C., Haug, F.-J., Söderström, T., Cubero, O. and Eminian, C., Physica Status Solidi-Rapid Research Letters, vol. 4 (7), pp. 181183, 2010.CrossRefGoogle Scholar
Misra, S., Yu, L., Foldyna, M. and Roca i Cabarrocas, P., Solar Energy Materials and Solar Cells, vol. 118, pp. 9095, 2013.CrossRefGoogle Scholar
Hsu, C.-M., Connor, S. T., Tang, M. X. and Cui, Y., Applied Physics Letters, vol. 93, p. 133109, 2008.CrossRefGoogle Scholar
Peng, K.-Q., Yan, Y.-J., Gao, S.-P. and Zhu, J., Advanced Materials, vol. 14 (16), pp. 11641167, 2002.3.0.CO;2-E>CrossRefGoogle Scholar
Lu, Y. and Lal, A., Nano Letters, vol. 10 (11), pp. 46514656, 2010.CrossRefGoogle Scholar
Jia, G., Eisenhawer, B., Dellith, J., Falk, F., Thøgersen, A. and Ulyashin, A., The Journal of Physical Chemistry C, vol. 117, pp. 10911096, 2013.CrossRefGoogle Scholar
Wagner, R. S. and Ellis, W. C., Applied Physics Letters, vol. 4 (5), pp. 8990, 1964.CrossRefGoogle Scholar
Červenka, J, Ledinský, M., Stuchlík, J., Stuchlíková, H., Bakardjieva, S., Hruška, K., Fejfar, A. and Kočka, J., Nanotechnology, vol. 21 (41), p. 415604, 2010.CrossRefGoogle Scholar
Xie, X., Zeng, X., Yang, P., Wang, C. and Wang, Q., Journal of Crystal Growth, vol. 347, pp. 710, 2012.CrossRefGoogle Scholar
Gunawan, O. and Guha, S., Solar Energy Materials and Solar Cells, vol. 93 (8), pp. 13881393, 2009.CrossRefGoogle Scholar
Putnam, M. C., Boettcher, S. W., Kelzenberg, M. D., Turner-Evans, D. B., Spurgeon, J. M., Warren, E. L., Briggs, R. M., Lewis, N. S. and Atwater, H. A., Energy & Environmental Science, vol. 3 (8), pp. 10371041, 2010.CrossRefGoogle Scholar
Adachi, M. M., Anantram, M. P. and Karim, K. S., Scientific Reports, vol. 3 (1546), 2013.Google Scholar
Misra, S., Yu, L., Foldyna, M. and Roca i Cabarrocas, P., IEEE Journal of Photovoltaics, vol. 5, No. 1, pp. 4045, 2015.CrossRefGoogle Scholar
Hänni, S., Bugnon, G., Parascandolo, G., Boccard, M., Escarré, J., Despeisse, M., Meillaud, F. and Ballif, C., Progress in Photovoltaics: Research and Application, vol. 21 (5), pp. 821826, 2013.Google Scholar
Mackenzie, K. D., Phys. Rev. B, 31, 2198, 1985.Google Scholar
Matsuda, A., Koyama, M., Ikuchi, N., Imanishiand, Y. and Tanaka, K., J. J. Appl. Phys, 25, pp. 5456, 1986.CrossRefGoogle Scholar
Schüttauf, J.-W., Niesen, B., Löfgren, L., Bonnet-Eymard, M., Stuckelberger, M., Hänni, S., Boccard, M., Bugnon, G., Despeisse, M., Haug, F.-J., Meillaud, F. and Ballif, C., Solar Energy Materials and Solar Cells, vol. 133, pp. 163169, 2015.CrossRefGoogle Scholar