Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:10:22.064Z Has data issue: false hasContentIssue false

The Quaternary System Fe-Cr-Mn-C and Aligned Ferrous Superalloys

Published online by Cambridge University Press:  15 February 2011

F. D. Lemkey
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
E. R. Thompson
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
J. C. Schuster
Affiliation:
Institute of Physical Chemistry,University of Vienna, Austria
H. Nowotny
Affiliation:
University of Connecticut, Storrs, CT 06268
Get access

Abstract

A challenge exists for wider application of low cost iron-base alloys in the extreme conditions of high temperature, hot corrosion, and high stress experienced in gas turbine engines. In response to this challenge the constitution of the quaternary, Fe-Cr-Mn-C, and to a lesser extent the quinary, Fe-Cr-Mn-Al-C, systems were examined for in situ composite alloy candidates. Multivariant eutectic compositions, determined from phase equilibria, were directionally solidified to produce aligned composites consisting of M7C3 carbides within a gamma iron matrix. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities. Stress rupture tests in the direction of phase alignment for certain compositions (e.g., Fe-20 wt% Cr-lO wt% Mn-3.2 wt% C) indicated strength values comparable to cast nickel-base superalloys and exceeded those of the strongest iron-nickel superalloys developed for automotive turbines. Results of cyclic sulfidation testing at 9000 indicated a balance of Cr and Al content to be important to the achievement of outstanding surface stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hautmann, A., Steel and Iron, 51, p 65, 1931.Google Scholar
2. Portevin, A., Pretit, E., and Jolivet, H., J. Iron Steel Inst., 130, p 219, 1934.Google Scholar
3. Schmatz, D. J. and Zackay, V. F., Trans. ASM, 51, p 299, 1959.Google Scholar
4. Gath, A., Trans. AIME, 215, p 753, 1959.Google Scholar
5. Stott, F. H., Wood, G. C., and Hobby, M. G. Oxidation of Metals, 3, No. 2, p 103, 1971.CrossRefGoogle Scholar
6. Hardwick, D. and Wallwork, G., Reviews on High Temperature Materials, 4, No. 1, p 47, 1978.Google Scholar
7. Holladay, J. W., DMIC Memorandum 82, January 1961.Google Scholar
8. Allen, R. E. and Perkins, R. J., “ODS FeCrAlY Component Manufacturing Development” AD770, 639/3GI, General Electric, Cincinnati, Ohio, March 1974.Google Scholar
9. French, R. D., “Substitution for Chromium in High Temperature Use”, Final Report Contract HO 188162, April 1982, Army Materials and Mechanics Research Center, Watertown, MA.Google Scholar
10. Thompson, E. R. and Lemkey, F. D., U.S. Patent 3,671,223, June 20, 1972.Google Scholar
11. van den Boomgaard, J. and van Run, A. M. J. G., “Proceedings of the Conference on In Situ Composites”, National Academy of Sciences, Washington, DC, NMAB Report 308–II, edited by Lemkey, F. D. and Thompson, E. R., p 161, 1973.Google Scholar
12. Quested, P. N., Miles, D. E., and McLean, M., Metals Technology, p 433, November 1980.Google Scholar
13. Thompson, E. R. and Lemkey, F. D., Met. Trans., 1, p 2799, 1970.CrossRefGoogle Scholar
14. Hildebrandt, V. W. and Sahm, P. R., J. Mat. Sci., 13, p 1031, 1978.Google Scholar
15. Thompson, E. R. and Lemkey, F. D. in Metallic Matrix Composites, edited by Kreider, K. G., Academic Press, NY, p 102, 1974.Google Scholar
16. Koster, V. W. and Sperner, H., Arch. Eisenhuettenw, 22, p 555, 1955.Google Scholar
17. Hillert, M. and Waldenstrom, W., Calphad, 1, p 97, 1977.CrossRefGoogle Scholar
18. Lundberg, R., Waldenstrom, M. and Uhrenius, B., Calphad, 1, p 159, 1977.Google Scholar
19. Hillert, M. and Waldenstrom, M., Met. Trans., 8A, p 5, 1977.CrossRefGoogle Scholar
20. Brewer, L., Chipman, J., and Chang, S. G., in Metals Handbook, 8th Edition, ASM. Google Scholar
21. Shimma, S., Proc. Imp. Acad., 6, p 269, 1929.Google Scholar
22. Benz, R., Met. Trans., 5, p 2217, 1974.Google Scholar
23. Butler, J. F., McCabe, C. L., and Paxton, H. W., Trans. Met. Soc. AIME, 221, p 479, 1961.Google Scholar
24. Heczko, T., Berg u. Huttenm. Mh. 92, p 125, 1957.Google Scholar
25. Wever, F. and Koch, W., Stahl u. Eisen, 74, p 989, 1954.Google Scholar
26. Kudielka, H. and Moller, H., Z.Krist, 118, p 213, 1963.Google Scholar
27. Westgren, A., Phragmen, G. and Negresco, T., J. Iron and Steel Inst., 117, p 383, 1928.Google Scholar
28. Schatt, W., Intermetallics, VEB, Leipzig, 1977.Google Scholar
29. Pradelli, G. and Cianoglio, C., Metall Italiana, 66, p 21, 1975.Google Scholar
30. Lucco, M. and Pradelli, G., Metall. Italiana, 63, p 109, 1971.Google Scholar
31. Bouchaud, J. P., Ann. Chim., 2, p 353, 1967.Google Scholar
32. Bouchaud, J. P. and Fruchart, R., Acad, C. R.. Sci., Paril, p 160, 1964.Google Scholar
33. Papesch, G., Thesis, Univ. Vienna, 1977.Google Scholar
34. Papesch, G., Nowotny, H. and Benesovsky, F., Mh Chem, 104, p 933, 1973.Google Scholar
35. Fruchart, R., Senateur, J. P., Bouchaud, J. P. and Michel, A., Acad, C. R.. Sci., Paris, 260, p 913, 1965.Google Scholar
36. Pearson, W. B., Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 1, Pergamon, NY, p 941, 1958.Google Scholar
37. Taran, Yu N., Novik, V. I. and Shestopalenko, R. E., Dopovidi Akad. Nauk USSR, Ser. A, 3, p 272, 1977.Google Scholar
38. Benz, R., Elliott, J. F. and Chipman, J., Met. Trans., 4, p 1449, 1973.CrossRefGoogle Scholar
39. Anderko, K., “Constituents of Binary Alloys”, McGraw-Hill Book Co., NY, 1958.Google Scholar
40. Elliott, R. P., “Constituents of Binary Alloys”, McGraw-Hill Book Co., NY, 1965.Google Scholar
41. Kirchner, G. and Uhrenius, B., Acta Met, 22, p 523, 1924.CrossRefGoogle Scholar
42. Potůćek, B., Hutnicke Listy, 13, p 1070, 1958.Google Scholar
43. Shvedov, L. J. and Pavlenko, Z., Vestsi Akad. Nauk B, USSR, Ser. Tr Khn, 2, p 14, 1975.Google Scholar
44. Bungardt, K., Kunze, E. and Horn, El., Arch. Eisenhutten, 299, p 193, 1958.Google Scholar
45. Shvedov, L. I., Dokb. Akad. Nauk B, USSR, 19 (8), p 709, 1975.Google Scholar
46. Shvedov, L. I. and Pavlenko, Z. D., Vestsi Akad. Nauk B, SSR, Ser. Fiz.Tekh., p 22, 1975.Google Scholar
47. Estrin, E. I. et al. , Scripta Met., 9 (5), p 485, 1975.Google Scholar
48. Baranov, M. F. et al. , Probl. Treniya Izuashivaniya, 7, p 146, 1975.Google Scholar
49. Baranov, M. F. and Bobro, Yu. G., Tekhn. Organ. Proizvod., (4), p 39, 1975.Google Scholar
50. Gorev, K. V., Shvedov, L. I. and Tsedrik, I. F., Vestsi Akad. Nauk B, SSR, Ser. Fiz, Teckhn, Nauk (4), p 47, 1974.Google Scholar
51. Nishelskii, P. E., Kozavskin, A. A. and Shtshvetzor, V. I., Metally, No. 2, p 259, 1977.Google Scholar