Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:06:15.559Z Has data issue: false hasContentIssue false

Quartz Crystal Microbalance Studies of the Plasma-Assisted Etching of Polyimide and Tungsten Thin Films

Published online by Cambridge University Press:  28 February 2011

F. Fracassi
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120
J. W. Coburn
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120
Get access

Abstract

The etching of polyimide thin films and tungsten thin films has been studied as a function of bias voltage using two quartz crystal microbalances (QCM) installed in a low pressure 13.56 MHz rf plasma system.One of the QCM's is biased (rf bias was used for the polyimide films; de bias was used for the tungsten films) and the other QCM is unbiased.In this way, the influence of energetic positive ion bombardment on etching can be studied.The etching of polyimide is studied in CF4-O2 glow discharges whereas CF4-H2 gas mixtures were used in the etching of tungsten.In the tungsten etching studies, the surfaces were vacuum-transferred to an Auger electron spectrometer for surface analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Turban, G. and Rapeaux, M., J.Electrochem.Soc. 130, 2231 (1983).CrossRefGoogle Scholar
[2] Yeh, J.T.C., Grebe, K.R. and Palmer, M.J., J.Vac.Sci.Technol.A 2, 1292 (1984).CrossRefGoogle Scholar
[3] Egitto, F.D., Emmi, F. and Horwath, R.S., J.Vac.Sci.Technol.B 3, 893 (1985).CrossRefGoogle Scholar
[4] Sun, C.P. and Saenger, K.L., J.Vac.Sci.Technol.(to be published).Google Scholar
[5] Randall, J.W. and Wolfe, J.C., Appl.Phys.Lett. 39, 742 (1981).CrossRefGoogle Scholar
[6] Tang, C.C. and Hess, D.W., J.Electrochem.Soc. 131, 115 (1984).CrossRefGoogle Scholar
[7] Winters, H.F., J.Vac.Sci.Technol.A 3, 700 (1985).CrossRefGoogle Scholar
[8] Susa, N., J.Electrochem.Soc. 132, 2762 (1985).CrossRefGoogle Scholar
[9] Adachi, S. and Susa, N., J.Electrochem.Soc. 132, 2980 (1985).CrossRefGoogle Scholar
[10] Schattenburg, M.L., Plotnik, I. and Smith, H.I., J.Vac.Sci.Technol.B 3, 272 (1985).CrossRefGoogle Scholar
[11] Winters, H.F., J.Vac.Sci.Technol.B 3, 9 (1985).CrossRefGoogle Scholar
[12] Us, N.C., Sadowski, R.W. and Coburn, J.W., Plasma Chem.Plasma Process 6, 1 (1986).CrossRefGoogle Scholar
[13] Kohler, K., Coburn, J.W., Horne, D.E., Kay, E. and Keller, J.H., J.Appl.Phvs 57, 59 (1985).CrossRefGoogle Scholar
[14] Lee, Y.H. and Chem, M.-M., J.Appl.Phys. 54, 5966 (1983).CrossRefGoogle Scholar
[15] Lee, Y.H., and Chen, M.-M., Thin Solid Films 118, 149 (1984).CrossRefGoogle Scholar
[16] Flamm, D.L., Plasma Chem.Plasma Process 1, 317 (1981).CrossRefGoogle Scholar
[17] Ephrath, L.M. and Petrillo, E.J., J.Electrochem.Soc. 129, 2282 (1982).CrossRefGoogle Scholar
[18] Coburn, J.W. and Winters, H.F., J.Vac.Sci.Technol 16, 391 (1979).CrossRefGoogle Scholar
[19] Smith, D.L. and Saviano, P.G., J.Vac.Sci.Technol. 21, 768 (1982).CrossRefGoogle Scholar