Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:53:21.420Z Has data issue: false hasContentIssue false

Quantum Dynamical Simulation of Many Electron-Phonon Coupled Systems on Parallel Computers

Published online by Cambridge University Press:  01 January 1992

Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, and Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803-4001
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, and Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803-4001
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, and Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803-4001
Get access

Abstract

A quantum dynamical simulation method is developed to investigate coupled many electron-phonon systems. Both electron and phonon wave functions are numerically propagated in time. The method is applied to the study of resonant tunneling of an electron through double quantum dots. Phonon-induced electron localization is observed. The space- splitting Schrödinger solver and dynamical-simulated-annealing Poisson solver are implemented on an 8,192-node MP-1 computer from MasPar.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Datta, S., Superlattices and Microstructures 6, 83 (1989).Google Scholar
2. Capasso, F., Mohammed, K., and Cho, A. Y., IEEE J. Quantum Electron. QE–22, 1853(1986).Google Scholar
3. Likharev, K. K., IBM J. Res. Develop. 32, 144 (1988).Google Scholar
4. Stroscio, M. A. Kim, K. W., Iafrate, G. J., Dutta, M., and Grubin, H. L., Phil. Mag. Lett. 65, 173 (1992).Google Scholar
5. Nakano, A., Vashishta, P., and Kalia, R. K., Phys. Rev. B 43, 9066 (1991).Google Scholar
6. Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. B 44, 8121 (1991).Google Scholar
7. Nakano, A., Vashishta, P., and Kalia, R. K., unpublished.Google Scholar
8. Richardson, J. L., Comput. Phys. Commun. 63, 84 (1991).Google Scholar
9. Car, R. and Parrinello, M., Solid State Commun. 62, 403 (1987).Google Scholar
10. Gross, E. K. U. and Kohn, W., in Advances in Quantum Chemistry, Vol. 21, ed. Trickey, S.B. (Academic Press, San Diego, 1990), p. 255.Google Scholar
11. Jackson, B., J. Chem. Phys. 90, 140 (1989).Google Scholar
12. Goldman, V. J., Tsui, D. C., and Cunningham, J. E., Phys. Rev. B 36, 7635 (1987).Google Scholar
13. Wingreen, N. S., Jacobsen, K. W., and Wilkins, J. W., Phys. Rev. Lett. 61, 1396 (1988).Google Scholar
14. Feit, M. D., Fleck, J. A., and Steiger, A., J. Comput. Phys. 47, 412 (1982).Google Scholar
15. Hockney, R. W. and Eastwood, J. W., Computer Simulation Using Particles (Adam Hilger, New York, 1988).Google Scholar
16. Brandt, A., Math. Comput. 31 333 (1977).Google Scholar
17. Frederickson, P. O. and McBryan, O. A., in Multigrid Methods , ed. McCormick, S. F. (Marcel Dekker, New York, 1988) p. 195.Google Scholar