Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:44:01.326Z Has data issue: false hasContentIssue false

Quantum Dot-Organic Oligomer Nanostructures: Electronic Excitation Migration and Optical Memory Design

Published online by Cambridge University Press:  15 February 2011

Artjay Javier
Affiliation:
Department of Chemistry, University of California, Santa Barbara CA 93106-9510
C. Steven Yun
Affiliation:
Department of Chemistry, University of California, Santa Barbara CA 93106-9510
Geoffrey F. Strouse
Affiliation:
Department of Chemistry, University of California, Santa Barbara CA 93106-9510
Get access

Abstract

Energy, in the form of an electronic excitation, can be directed within an inorganicorganic composite of semiconductor quantum dots and organic oligomers by manipulating the structural conformations of the organic component or the size of the inorganic component. Continuous-wave and time-resolved photoluminescence studies indicate that weak electromagnetic resonant coupling between discrete intra-chain and inter-chain excitations of the oligomer and quantum dot excitations can be used to produce a potentially useful optical display material. Thin film blends demonstrate a thermally-induced luminescence-detected chainmelting phenomenon that has the potential for writable optical memory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Javier, A.; Yun, C. S.; Sorena, J.; Strouse, G. F. Journal of Physical Chemistry B 2003, 107, 435442.Google Scholar
(2) Sirota, M.; Minkin, E.; Lifshitz, E.; Hensel, V.; Lahav, M. Journal of Physical Chemistry B 2001, 105, 67926797.Google Scholar
(3) Mattoussi, H.; Radzilowski, L. H.; Dabbousi, B. O.; Fogg, D. E.; Schrock, R. R.; Thomas, E. L.; Rubner, M. F.; Bawendi, M. G. Journal of Applied Physics 1999, 86, 43904399.Google Scholar
(4) Huynh, W. U.; Peng, X.; Alivisatos, A. P. Advanced Materials (Weinheim, Germany) 1999, 11, 923927.Google Scholar
(5) Huynh, W. U.; Peng, X. G.; Alivisatos, A. P. Advanced Materials 1999, 11, 923927. 886.Google Scholar
(6) Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Physical Review B-Condensed Matter 1996, 54, 1762817637.Google Scholar
(7) Efros, A. L.; Rosen, M. Annual Review of Materials Science 2000, 30, 475521.Google Scholar
(8) Cornil, J.; Beljonne, D.; Calbert, J. P.; Bredas, J. L. Advanced Materials 2001, 13, 10531067.Google Scholar
(9) Frankevich, E.; Ishii, H.; Hamanaka, Y.; Yokoyama, T.; Fuji, A.; Li, S.; Yoskino, K.; Nakamura, A.; Seki, K. Physical Review B 2000, 62, 25052515.Google Scholar
(10) Huang, S. L.; Tour, J. M. Tetrahedron Letters 1999, 40, 33473350.Google Scholar
(11) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annual Review of Materials Science 2000, 30, 545610.Google Scholar
(12) Cumberland, S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Chemistry of Materials 2002, 14, 15761584.Google Scholar
(13) Forster, T. Discussions Faraday Soc. 1959, No. 27, 717.Google Scholar
(14) Norris, D. J.; Bawendi, M. G. Physical Review B-Condensed Matter 1996, 53, 1633816346.Google Scholar
(15) Nguyen, T. Q.; Doan, V.; Schwartz, B. J. Journal of Chemical Physics 1999, 110, 40684078.Google Scholar
(16) Herz, L. M.; Silva, C.; Phillips, R. T.; Setayesh, S.; Mullen, K. Chemical Physics Letters 2001, 347, 318324.Google Scholar