Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:19:02.391Z Has data issue: false hasContentIssue false

Quantitative Studies on the Evolution of the Polysilicon/Silicon Interfacial Oxide Upon Annealing

Published online by Cambridge University Press:  25 February 2011

Sergio A. Ajuria
Affiliation:
Department of Materials Science and Engineering
Rafael Reif
Affiliation:
Department of Electrical Engineering & Computer Science Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Polysilicon/silicon interfacial oxides are shown by cross-sectional Transmission Electron Microscopy studies to agglomerate upon annealing. In addition to presenting highlights of microscopy results, we report on electrical characterization data obtained from Cross-Bridge Kelvin Resistors. Resistor data not only support a model for agglomeration proven on microscopy data, but also allow for a quantitative macroscopic understanding of the agglomeration of polysilicon/silicon interfacial oxides over a wide range of times and temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Graul, J., Glasl, A., Murrmann, H., IEEE J. Solid-State Circuits, SC–11, 491495 (1976).Google Scholar
[2] Ning, T.H., Isaac, R.D., IEEE Trans. Electron Devices, ED–S7, 2051 (1980).Google Scholar
[3] Potyraj, P.A., Chen, D-L, Hatalis, M.K., Greve, D.W., IEEE Trans. Electron Devices, ED–35(8), 13341343 (1988).Google Scholar
[4] Crabbe, E.F., Hoyt, J.L., Pease, R.F.W., Gibbons, J.F., Materials Research Society Symposium Proceedings, V. 106, 247 (1988).Google Scholar
[5] Bravman, J.C., Patton, G.L., Plummer, J.D., J. Appl. Phys., 57(8), 27792782 (1985).Google Scholar
[6] Wolstenholme, G., Jorgensen, J., Ashburn, P., Booker, G.R., J. Appl. Phys., 61, 225233 (1986).Google Scholar
[7] Albu-Yaron, A., Barry, J.C., Booker, G.R., Proc. 8th European Congress on Electron Microscopy 1, Csanady, A., ed. (Budapest, Hungary), 521 (1984).Google Scholar
[8] Ajuria, S.A., Reif, R., To appear in J. Appl. Phys., January 1991.Google Scholar
[9] Loh, W.M., Swirhun, S.E., Crabbe, E., Saraswat, K.C., Swanson, R.M., Elec. Dev. Let., 6(9), 441 (1985).Google Scholar
[10] Crabbe, E., Swirhun, S., del Alamo, J., Pease, R.F.W., Swanson, R.M., IEEE Int. Electron Devices Meeting, 28–31 (1986).Google Scholar
[11] Patton, G.L., Bravman, J.C., Plummer, J.D., IEEE Trans. Electron Devices, ED–SS(11), 17541768 (1986).Google Scholar
[12] Chor, E.F., Ashburn, P., Brunnschweiler, A., IEEE Electron Device Letters, EDL–6, 516518 (1985).Google Scholar
[13] Brandon, R.H., Bradshaw, F.J., R.A.E. (Farnborough) Rep. 66095 (1966).Google Scholar
[14] Srolovitz, D.J., Safran, S.A., J. Appl. Phys., 60, 255 (1986).Google Scholar
[15] Jiran, E., PhD Thesis, Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, 1990.Google Scholar
[16] Johnson, W.A., Mehl, R.F., Trans. AIME, 135, 416 (1939).Google Scholar
[17] Avrami, M., J. Chem. Phys., 7, 1103 (1939).Google Scholar