Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:39:51.539Z Has data issue: false hasContentIssue false

Quantitative Charge Imaging of Silicon Nanocrystals by Atomic Force Microscopy

Published online by Cambridge University Press:  11 February 2011

Tao Feng
Affiliation:
Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Harry A. Atwater
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Get access

Abstract

Quantitative understanding of charging and discharging of Si nanocrystals in SiO2 films on Si substrate is essential to their application in floating gate nonvolatile memory devices. Charge imaging by atomic force microscopy (AFM) or electrostatic force microscopy (EFM) can provide qualitative information on such system, while a further step is needed. We have developed a generalized method of images, which can solve Poisson equation for multiple dielectric layers, to simulate the charge imaging of Si nanocrystals by non-contact mode AFM under different sample geometries. Simulated images can be compared with experimental images thoroughly to estimate the total amount and distributions of trapped charges, which is also useful in the study of time evolution of charges or dissipation problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996)Google Scholar
Binning, G., Quate, C., and Gerber, C., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
3 Terris, B. D., Stern, J. E., Rugar, D., and Mamin, H. J., Phys. Rev. Lett. 63, 2669 (1989)Google Scholar
4 Schaadt, D. M., Yu, E. T., Sankar, S., and Berkowitz, A. E., Appl. Phys. Lett. 74, 472 (1999)Google Scholar
5 Jones, J. T., Bridger, P. M., Marsh, O. J., and McGill, T. C., Appl. Phys. Lett. 75, 1326 (1999)Google Scholar
6 Boer, E. A., Bell, L. D., Brongersma, M. L., Flagan, R. C., and Atwater, H. A., Appl. Phys. Lett. 79, 791 (2001)Google Scholar
7 Guillemot, C., Budau, P., Chevrier, J., Marchi, F., Comin, F., Alandi, C., Bertin, F., Buffet, N., Wyon, Ch., and Mur, P., Europhys. Lett. 59 (4), 566 (2002)Google Scholar
8 Boer, E. A., Bell, L. D., Brongersma, M. L., and Atwater, H. A., J. Appl. Phys. 90, 2764 (2001)Google Scholar
9 Martin, Y., Abraham, D. W., and Wickramasinghe, H. K., Appl. Phys. Lett. 52, 1103 (1988)Google Scholar
10 Stern, J. E., Terris, B. D., Mamin, H. J., and Rugar, D., Appl. Phys. Lett. 53, 2717 (1988)Google Scholar
11 Li, Z.-Y., Gu, B.-Y., and Yang, G.-Z., Phys. Rev. B 57, 9225 (1998)Google Scholar
12 Jackson, J. D., Classical electrodynamics, 3rd ed. (New York: Wiley, 1999), Chap. 2, 4 Google Scholar
13 Sze, S. M., Physics of semiconductor devices, 2nd ed. (New York: Wiley, 1981).Google Scholar