Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T08:10:53.335Z Has data issue: false hasContentIssue false

Pyrolytic Lcvd of Silicon Using A Pulsed Visible Laser - Experiment and Modelling

Published online by Cambridge University Press:  22 February 2011

B. Ivanov
Affiliation:
Technological University of Sofia, Dept. of Semiconductors, 8 Kliment Ohridski St., 1756 Sofia, Bulgaria
C. Popov
Affiliation:
Technological University of Sofia, Dept. of Semiconductors, 8 Kliment Ohridski St., 1756 Sofia, Bulgaria
V. Shanov
Affiliation:
Technological University of Sofia, Dept. of Semiconductors, 8 Kliment Ohridski St., 1756 Sofia, Bulgaria
D. Filipov
Affiliation:
Technological University of Sofia, Dept. of Semiconductors, 8 Kliment Ohridski St., 1756 Sofia, Bulgaria
Get access

Abstract

Maskless deposition of silicon from silane on Si monocrystalline wafer using copper bromide vapor laser (CBVL) is investigated. Morphology and geometric parameters of the stripes obtained are studied and some conclusions for the process mechanism are made. Applying Kirchoff's transform and Green's function analysis nonlinear heat diffusion problem for different pulse shapes was solved. The influence of pulse shape on the temperature distribution and its time evolution was studied. Nonisothermal and non-stationary deposition kinetic models using the obtained results were developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ehrlich, D.J., Osgood, R.M. Jr., Deutsch, T.F., Appl. Phys. Lett. 39 (12), 957959 (1981)Google Scholar
2. Bauerle, D., Irsigler, P., Leyendecker, G., Noll, H., Wagner, D., Appl. Phys. Lett. 40 (9), 819–621 (1982)CrossRefGoogle Scholar
3. Binnie, T.D., Wilson, J.I., Colles, M.J., West, J.L., J. Appl. Phys. 58 (11), 44464448 (1985)CrossRefGoogle Scholar
4. Roy, S.K., Vengurlekar, A.S., Joshi, A.V., Chandrasekhar, S., J. Electronic Materials 16 (4), 211217 (1987)Google Scholar
5. Skouby, D.C. and Jensen, K.F., J. Appl. Phys. 63 (11), 198205 (1988)Google Scholar
6. Arnold, N., Kullmer, R., Bauerle, D., Microelectronic Engineering 20, 3154 (1993)CrossRefGoogle Scholar
7. Haba, B., Hussey, B.W., Gupta, A., J. Appl. Phys. 69 (5), 28712876 (1990)Google Scholar
8. Haba, B., Hussey, B.W., Gupta, A., Baseman, R.J., Mat. Res. Soc. Symp. Proc. 158 (1990) pp. 319324 Google Scholar
9. Shanov, V., lvanov, B., Popov, C., Thin Solid Films 207, 7174 (1992)Google Scholar
10. Bauerle, D., Chemical Processing with Lasers (Springer-Verlag, Heidelberg, 1986), p. 57 Google Scholar
11. Boughabaand, S. Auvert, G., Appl. Surf. Sci. 54, 2129 (1992)Google Scholar
12. Herman, I., Magnotta, F., Kotecki, D.E., J. Vac. Sci. Technol. A 4 (3), 659664 (1986)Google Scholar
13. Nissim, Y.I., Lietoila, A., Gold, R.B., Gibbons, J.F., J. Appl. Phys. 51 (1), 274279 (1980)Google Scholar
14. Moody, J. and Hendel, R.H., J. Appl. Phys. 53, 4364 (1982)Google Scholar
15. Gates, S.M., Greenlief, C.M., Beach, D.B., Kunz, R.R., Chem. Phys. Lett. 154 (6), 505510 (1989)Google Scholar
16. Jensen, K.F. and Graves, D.B., J. Electrochem. Soc. 130 (9), 19501957 (1983)Google Scholar
17. Jasinski, J.M. and Gates, S.M., Acc. Chem. Res. 24 (1), 915 (1991)Google Scholar
18. Holleman, J. and Verweij, J.F., J. Electrochem. Soc. 140 (7), 20892097 (1993)CrossRefGoogle Scholar
19. Buss, R.J., Ho, P., Breiland, W.G., Coltrin, M.E., J. Appl. Phys. 63 (8), 28082819 (1988)CrossRefGoogle Scholar
20. Auvert, G., Tonneau, D., Pauleau, Y., Appl. Phys. Lett. 52 (13), 10621064 (1988)CrossRefGoogle Scholar
21. Farnaam, M.K. and Olander, D.R., Surf. Sci. 145, 390406 (1984)CrossRefGoogle Scholar