Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:35:33.207Z Has data issue: false hasContentIssue false

Pulsed Low-energy Ion-beam Induced Nucleation and Growth of Ge Nanocrystals on SiO2

Published online by Cambridge University Press:  01 February 2011

Anatoly Dvurechenskii
Affiliation:
[email protected], Institute of Semiconductor Physics, Physics Siberian Branch of Russian Academy of Sciences, Pr. Lavrent'eva, 13, Novosibirsk, 630090, Russian Federation
Nataly Stepina
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Pavel Novikov
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Vladislav Armbrister
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Valery Kesler
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Anton Gutakovskii
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Victor Kirienko
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Zhanna Smagina
Affiliation:
[email protected], Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Reiner Groetzschel
Affiliation:
[email protected], Forschungszentrum Rossendorf, Dresden, D-01314, Germany
Get access

Abstract

Pulsed low-energy (200 eV) ion-beam-induced nucleation during Ge deposition on thin SiO2 film was used to form dense homogeneous arrays of Ge nanocrystals. The ion-beam action is shown to stimulate the nucleation of Ge nanocrystals when being applied after thin Ge layer deposition. Temperature and flux variation was used to optimize the nanocrystal size and array density required for memory device. Kinetic Monte Carlo simulation shows that ion impacts open an additional channel of atom displacement from a nanocrystal onto SiO2 surface. This results both in decrease of the average nanocrystal size and in increase of nanocrystal density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiwari, S., Rana, F., Hanati, H., Hartstein, A., Crabble, E.F. and Chan, K., Appl. Phys. Lett. 68, 13770 (1996).Google Scholar
2. Kim, D.W., Kim, T. and Benerjee, S.K., IEEE Trans. Electron Devices 50, 1823 (2003).Google Scholar
3. Kanjilal, A., Hansen, J.L., Gaiduk, P., Larsen, A.N., Cherkashin, N., Claverie, A., Normand, P., Kapelanakis, E., Skarlatos, D., and Tsoukalas, D., Appl. Phys. Lett. 82, 1212 (2003).Google Scholar
4. King, Y.C., King, T.J., and Hu, C., IEEE Trans. Electron Devices 48, 696 (2001).Google Scholar
5. Lu, X.B., Lee, P. F. and Dai, J.Y., Appl. Phys. Lett. 86, 203111 (2005).Google Scholar
6. Normand, P., Kapetanakis, E., Tsoukalas, D., Kamoulakos, G., Beltsios, K., Berg, J.Van Den, Zhang, S., Mat. Sci. and Eng. C 15, 145 (2001).Google Scholar
7. Sass, T., Zela, V., Gustafsson, A., Pietzonka, I. and Seifert, W., Appl. Phys. Lett. 81, 3455 (2002).Google Scholar
8. Sass, T., Zela, V., Gustafsson, A., Pietzonka, I. and Seifert, W., Appl. Phys. Lett. 81, 3455 (2002).Google Scholar
9. Dvurechenskii, A.V., Novikov, P.L., Khang, Y., Smagina, Zh.V., Armbrister, V.A., Gutakovskii, A.K., Proc. SPIE, 2006, 6260, 626006–1 (2006).Google Scholar
10. Novikov, P., K.-H. Heinig, Larsen, A., Dvurechenskii, A., Nucl. Instum. Methods Phys. Res. B 191, 462 (2002).Google Scholar
11. Srivastava, D. and Garrison, B.J., Phys. Rev. B46, 1472 (1994).Google Scholar
12. Wang, Z. and Seebauer, E.G., Phys. Rev. Lett. 95, 015501 (2005).Google Scholar