Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:45:23.076Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition of Chromium Oxides: Substrate Effects

Published online by Cambridge University Press:  21 March 2011

Helia Jalili
Affiliation:
Departments of Physics and Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
Nina Heinig
Affiliation:
Departments of Physics and Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
K. T. Leung
Affiliation:
Departments of Physics and Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
Get access

Abstract

Pulsed Laser Deposition (PLD) was used to grow chromium oxides (CrOx) on MgO(100), Al2O3(0001), SrTiO3(100), LaAlO3(100), and Si(100) under different growth conditions, including substrate temperature, O2 pressure, and laser fluence. SEM, AFM and XRD measurements show that various phases of CrOx films with different morphologies could be obtained on different substrates under the same growth conditions. Half-metallic CrO2 needle-like nanostructured films were only observed on MgO(100) under a special set of conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McDaneil, M. P., Catal. 33, 47 (1985).Google Scholar
2. Miremadi, B. K., Singh, R. C., Chen, Z., Morrison, S. Roy, Colbow, K., Sensors Actuators B 21, 1 (1994).Google Scholar
3. Mensch, M. W., Byrd, C. M., Cox, D. F., Catal. Today 85, 279 (2003).Google Scholar
4. Adamas, R. O., J. vac. Sci. Technol. A 1, 12 (1983).Google Scholar
5. Schwartz, K., J. Phys. F: Met. Phys. 16, L211 (1986)Google Scholar
6. Kamper, K. T., Schmitt, W., Gntherodt, G., Gambino, R. J., Phys. Rev. Lett. 59, 2788 (1987).Google Scholar
7. Barry, A., Coey, J. M., Viret, M., J. Phys.: Condens. Matter 12, L173 (2000).Google Scholar
8. Li, X. W., Gupta, A, Xiao, G., Appl. Phys. Lett. 75, 713 (1999).Google Scholar
9. Coey, J. M., Venkatesan, M., J. Appl. Phys. 91, 10 (2002).Google Scholar
10. Kubota, B., Hirota, E., J. Phys. Soc. Jpn. 16, 345 (1960).Google Scholar
11. Ishibashi, S., Namikawa, T., Satou, M., Mat. Res. Bull. 14, 51 (1979).Google Scholar
12. Gupta, A., Sun, J. Z., J. Magn. Magn. Mater. 200, 24 (1999).Google Scholar
13. DeSisto, W. J., Broussard, P. R., Ambrose, T. F., Nadgorny, B. E., Osofsky, M. S., Appl. Phys. Lett. 76, 25 (2000).Google Scholar
14. Bullen, H. A., Garrett, S. J., Chem. Mater. 14, 243 (2002).Google Scholar
15. Shima, M., Tepper, T., Ross, C. A., J. Appl. Phys. 91, 7920 (2002).Google Scholar
16. Stanoi, D., Socol, G., Grigorescu, C., Guinneton, F., Monnereau, O., Tortet, L., Zhang, T., Milailescu, I. N., Mater. Sci. Eng. B 118, 74 (2005).Google Scholar
17. It should be noted that while the SEM (or AFM) images appear to show that the deposited films to be not continuous, it is not possible to determine whether their respective nanostructures are not on top of a wetting. layer of a few atoms thick (especially given their colours over the substrates). As such, the word film. is used somewhat ambiguously here, and it refers to the nanostructured overlayer that may or may not be continuous.Google Scholar
18. PDF22004 (Highscore).Google Scholar
19. Umada, N., Yanagihara, H., Hatanaka, A., Kita, E., Jap. Soc. Appl. Phys. 44, 6538 (2005).Google Scholar
20. Yu, T., Shen, Z. X., He, J., Sun, W. X., Tang, S. H., Lin, J. Y., J. Appl. Phys. 93, 7 (2003).Google Scholar