Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:45:50.615Z Has data issue: false hasContentIssue false

Pulsed Laser Annealing of R.F.Sputtered Amorphous Si : H.Films, Doped with Arsenic+

Published online by Cambridge University Press:  15 February 2011

E. Fogarassy
Affiliation:
Groupe de Physique et Applications des Semiconducteurs, Centre de Recherches Nucléaires, 67037 STRASBOURG Cedex, FRANCE
R. Stuck
Affiliation:
Groupe de Physique et Applications des Semiconducteurs, Centre de Recherches Nucléaires, 67037 STRASBOURG Cedex, FRANCE
M. Toulemonde
Affiliation:
Groupe de Physique et Applications des Semiconducteurs, Centre de Recherches Nucléaires, 67037 STRASBOURG Cedex, FRANCE
P. Siffert
Affiliation:
Groupe de Physique et Applications des Semiconducteurs, Centre de Recherches Nucléaires, 67037 STRASBOURG Cedex, FRANCE
J.F. Morhange
Affiliation:
Groupe de Physique et Applications des Semiconducteurs, Centre de Recherches Nucléaires, 67037 STRASBOURG Cedex, FRANCE
M. Balkanski
Affiliation:
Groupe de Physique et Applications des Semiconducteurs, Centre de Recherches Nucléaires, 67037 STRASBOURG Cedex, FRANCE
Get access

Abstract

Arsenic doped amorphous silicon layers have been deposited on silicon single crystals by R.F.cathodic sputtering of a silicon target in a reactive argon-hydrogen mixture, and annealed with a Q-switched Ruby laser. Topographic analysis of the irradiated layers has shown the formation of a crater, due to an evaporation effect of material which could be related to the presence of a high concentration of Ar in the amorphous layer. RBS and Raman Spectroscopy showed that the remaining layer is not recrystallised probably due to inhibition by the residual hydrogen. However, it was found that arsenic diffuses into the monocrystalline substrate by laser induced diffusion of dopant from the surface solid source, leading to the formation of good quality P-N junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

work performed under COMES and PIRDES contract.

References

REFERENCES

1. Hoonhout, D., Kerdijk, C.B. and Saris, F.W., Phys.Lett. 66A, 145 (1978).Google Scholar
2. Lau, S.S., Tseng, W.F., Nicolet, M.A., Mayer, J.W., Eckardt, R.C. and Wagner, R.J., Appl. Phys.Lett. 33, 130 (1978).Google Scholar
3. Revesz, P., Farkas, Gy., Mezey, G. and Gyulai, J., Appl. Phys.Lett. 33, 431 (1978).Google Scholar
4. Lau, S.S., Tseng, W.F., Golecki, I., Kennedy, E.F. and Mayer, J.W., AIP Conf. Proceedings n° 50, Boston (1978) edited by S.D.Ferris, H.J.Leamy and J.M.Poate, p. 503.Google Scholar
5. Young, R.T., Narayan, J. and Wood, R.F., Appl. Phys.Lett. 35, 447 (1979).Google Scholar
6. Kennedy, E.F., Csepregi, L., Mayer, J.W. and Sigmon, T.W., J.Appl. Phys. 48, 4241 (1977).CrossRefGoogle Scholar
7. Matteson, S., Revesz, P., Farkas, Gy., Gyulai, J. and Sheng, T.T., J.Appl. Phys. 51, 2625 (1980).CrossRefGoogle Scholar
8. Peercy, P.S. and Stein, H.J., Laser and electron Beam Processing of materials 1979, edited by C.W.White and P.S.Peercy, p. 411.Google Scholar
9. Toulemonde, M., Muller, J.C. and Siffert, P., Laser and electron Beam processing of Materials 1979, edited by C.W.White and P.S.Peercy, p. 417.CrossRefGoogle Scholar
10. Kanellis, G., Morhange, J.F. and Balkanski, M., Phys.Rev.B 21, 1543 (1980).CrossRefGoogle Scholar
11. Iqbac, Z., Veprek, S., Webb, A.P. and Capezzuto, P., Solid State Comm. 37, 993(1981).Google Scholar
12. Jouanne, M., Beserman, R., Ipatona, I. and Subashiev, R., Solid State Comm. 16, 1047 (1975).CrossRefGoogle Scholar