Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:25:06.577Z Has data issue: false hasContentIssue false

Pulsed Femtosecond Excimer Laser-Induced Chemically Clean Etching of Diamond

Published online by Cambridge University Press:  15 February 2011

A.P. Malshe
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), Department of Mechanical Engineering and High Density Electronics Center (HiDEC), Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas, 72701
A.M. Ozkan
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), Department of Mechanical Engineering and High Density Electronics Center (HiDEC), Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas, 72701
T.A. Railkar
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), Department of Mechanical Engineering and High Density Electronics Center (HiDEC), Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas, 72701
P.A. Molian
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, Iowa
W.D. Brown
Affiliation:
Materials and Manufacturing Research Laboratory (MRL), Department of Mechanical Engineering and High Density Electronics Center (HiDEC), Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas, 72701
Get access

Abstract

Chemically clean etching of thermodynamically metastable diamond using a 500 femtosecond (fs), 248 nm KrF excimer laser is reported. The experimental results, characterized by micro-Raman spectroscopy indicate that unlike nanosecond (ns) pulsed laser processing of diamond, fs laser irradiation of the surface does not generate any graphite or amorphous carbon residues. Microstructural analysis of the fs pulsed laser etched surface indicates streaks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ozkan, A.M., Malshe, A.P., and Brown, W.D., Diamond Relat. Mater., 6 1789 (1997).Google Scholar
[2] Kautek, W. and Kruger, J., SPIE 2207, 600611 (1994).Google Scholar
[3] Pimenov, S. M., Smolin, A. A., Ralchenko, V. G., and Konov, V. I., Diamond Films and Technol., 2 (4) 201 (1993).Google Scholar
[4] Bogli, U., Blatter, A., Pimenov, S. M., Smolin, A. A., Konov, V. I., Diamond Relat. Mater., 1 782 (1992).Google Scholar
[5] Malshe, A.P., Railkar, T.A., Ozkan, A.M., Molian, P.A., Muyshondt, A., and Brown, W. D.; will 128 be presented at the 1998 ASME conference, Anaheim, CA (1998).Google Scholar
[6] Rothschild, M., Amone, C., and Ehrlich, D. J., J. Vac. Sci.and Technol. B, 4(1) 310 (1986).Google Scholar
[7] Blatter, A., Bogli, U., Bouilov, L. L., Chapliev, N. I., Konov, V. I., Pimenov, S. M., Smolin, A. A., and Spitsyn, B. V., J. Electrochem. Soc. 91 357 (1991).Google Scholar
[8] Ageev, V. P., Armeyev, V. Y., Chapliev, N. I., Kuzmichov, A. V., Pimenov, S. M., and Ralchenko, V. G., Mater. and Manufacturing Process., 8 (1) 1 (1993).Google Scholar
[9] Tokarev, V. N., Wilson, J. B., Jubber, M. G., John, P., and Milne, D. K., Diamond Relat. Mater., 4 169 (1995).Google Scholar
[10] Singh, R. and Lee, D. G., J. Electronic Mater., 25 137 (1996).Google Scholar
[11] Ralchenko, V. G., Korotushenko, K. G., Smolin, A. A, Loubnin, E. N., Diamond Relat. Mater., 4 893 (1995).Google Scholar
[12] Ravi, K. V. and Zarifis, V. G., Proc. of 3rd Int'l. Symp. on Diamond Mater., The Electrochemical Society, Pennington, NJ, 861, 1993.Google Scholar
[13] Klein, C.A., Diamond Films and Technol., 5 (3) 141158 (1995).Google Scholar
[14] Ehrlich, D.J., Tsao, J.Y., Laser Microfabrication, Thin Processes and Lithography, 1 ed. (Academic Press, San Diego, 1989), pp. 96187.Google Scholar
[15] Preuss, S. and Stuke, M., Appl. Phys. Lett. 67, 338340 (1993).Google Scholar
[16] Reitze, D.H., Ahn, H., Wang, X., and Downer, M.C., in Ultrafast Phenomena VII, Harris, C.B., Ippen, E.P., Mourou, G.A., and Zewail, A.H., eds. Springer-Verlag, Berlin, p.113, 1990.Google Scholar
[17] Robertson, J., Adv. Phys. 35, 318 (1986).Google Scholar
[18] McGeoch, S., Gibson, D., and Savage, J., Window and Dome Technol. Mater. III, Ed. Klocek, P. (SPIE Proc. 1760, Bellingham, 1992) 122.Google Scholar
[19] Sussmann, R., Scarsbrook, G., Wort, C., and Wood, R., Diamond and Relat. Mater. 3, 1173 (1994).Google Scholar
[20] Kondyrev, A., Tarasova, Y., and Chmel’, A., Sov. J. Opt. Technol. 59, 654 (1992).Google Scholar
[21] Klein, C. and DeSalvo, R., Appl. Phys. Lett. 63, 1895 (1993).Google Scholar
[22] Lui, P., Yen, R., and Bloembergen, N., IEEE J Quantum Electron 14, 574 (1978).Google Scholar
[23] Ihlemann, J., Wolff, B, and Simon, P., Appl. Phys. A 54, 363368 (1992).Google Scholar