Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:46:41.865Z Has data issue: false hasContentIssue false

Pulsed Excimer Laser Processing of AlN/GaN Thin Films

Published online by Cambridge University Press:  10 February 2011

W. S. Wong
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
L. F. Schloss
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
G.S. Sudhir
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
B. P. Linder
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
K-M. Yu
Affiliation:
Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA 94720
E. R. Weber
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
T. Sands
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
N. W. Cheung
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
Get access

Abstract

A KrF (248 nm) excimer laser with a 38 ns pulse width was used to study pulsed laser annealing of AIN/GaN bi-layers and dopant activation of Mg-implanted GaN thin films. For the AIN/GaN bi-layers, cathodoluminescence (CL) showed an increase in the intensity of the GaN band-edge peak at 3.47 eV after pulsed laser annealing at an energy density of 2000 mJ/cm2. Rutherford backscattering spectrometry of a Mg-implanted A1N (75 nm thick)/GaN (1.0 μm thick) thin-film heterostructure showed a 20% reduction of the 4He+ backscattering yield after laser annealing at an energy density of 400 mJ/cm2. CL measurements revealed a 410 nm emission peak indicating the incorporation of Mg after laser processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshida, S., Misawa, S. and Gonda, S., Appl. Phys. Lett. 42, 427 (1983).Google Scholar
2. Amano, H., Sawaki, N., and Akasaki, I., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
3. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
4. Sitar, Z., Smith, L.L. and Davis, R.F., J. Crystal Growth 141, 11 (1994).Google Scholar
5. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. Lett. 34, L797 (1995).Google Scholar
6. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Yamada, T. and Mukai, T., J. Appl. Phys. Lett. 34, L797 (1995).Google Scholar
7. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
8. Nakamura, S., Mukai, T., and Sonah, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
9. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamda, T., Matsushita, T, Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
10. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
11. Pearton, S.J., Vartuli, C.B., Zolper, J.C., Yuan, C. and Stall, R.A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
12. Khan, M.A., Shur, M.S., and Chen, Q., Appl. Phys. Lett., 68, 3022 (1996).Google Scholar
13. Götz, W., Johnson, N.M., Street, R.A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995).Google Scholar
14. Kennedy, T.A., Glaser, E.R., Freitas, J.A. Jr., Carlas, W.E., Khan, M.A. and Wickenden, D.K., J. Electron. Mater. 24, 219 (1995).Google Scholar
15. Liu, S.S., Cass, T.R., and Stevenson, D.A., J. Electron. Mat. 6, 237 (1977).Google Scholar