Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:14:57.645Z Has data issue: false hasContentIssue false

Pts-Oi Complex Formation in Platinum Diffused Silicon

Published online by Cambridge University Press:  01 February 2011

Wilfried Vervisch
Affiliation:
LMP, Université de Tours, 16 rue P. et M. Curie, BP 7155, 37071 Tours cedex 2, France TECSEN, UMR 6122 CNRS, Université Aix-Marseille III, 13397 Marseille Cedex 20, France STMicroelectronics, 16 rue P. et M. Curie, BP 7155, 37071 Tours cedex 2, France
Laurent Ventura
Affiliation:
LMP, Université de Tours, 16 rue P. et M. Curie, BP 7155, 37071 Tours cedex 2, France
Bernard Pichaud
Affiliation:
TECSEN, UMR 6122 CNRS, Université Aix-Marseille III, 13397 Marseille Cedex 20, France
Gérard Ducreux
Affiliation:
STMicroelectronics, 16 rue P. et M. Curie, BP 7155, 37071 Tours cedex 2, France
André Lhorte
Affiliation:
STMicroelectronics, 16 rue P. et M. Curie, BP 7155, 37071 Tours cedex 2, France
Get access

Abstract

When platinum is diffused at temperatures higher than 900°C in Cz or FZ low doped n-type silicon samples, which are then cooled slowly in the range [1-10]°C/min, a p-type doping leading to the formation of a pn junction can be observed by spreading resistance measurement. The lower the cooling rate, the deeper the junction is. This junction disappears after a second thermal treatment finishing with a quenching step. A platinum related complex formation is considered to explain this reversible doping behaviour. Different possible interactions between platinum and other impurities such as dopant atoms, intrinsic point defects, and common residual impurities (C, Oi, transition metallic atoms) are studied here. Experimental results from Pt diffusion processes in different qualities of silicon wafers, and simulation results, lead to the conclusion that the platinum related p-type doping effect is due to the formation of a Pts-Oi complex.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brotherton, S. D., Bradley, P. and Bricknell, J., J. Appl. Phys. 50, 3396 (1979)Google Scholar
2 Kwon, Y. K., Ishikawa, T. and Kuwano, H., J. Appl. Phys. 61, 1055 (1987)Google Scholar
3 Pearton, S. J. and Haller, E. E., J. Appl. Phys. 54, 3613 (1983)Google Scholar
4 Carchano, H. and Jund, C., Solid State Electron. 13, 83 (1970)Google Scholar
5 Lisiak, K. P. and Milnes, A. G., J. Appl. Phys. 46, 5229 (1975)Google Scholar
6 Evwaraye, A. O. and Sun, E., J. Appl. Phys. 47, 3172 (1976)Google Scholar
7 Azimov, S. A., Islamov, L. I. and Sultanov, N. A., Sov. Phys. 50, 758 (1974)Google Scholar
8 Hayes, A. V., Livschultz, M. and Knowles, T. J., Symposium Proceedings “High voltage and smart power devices” (1987) pp. 194 Google Scholar
9 Stöffer, W. and Weber, J., Phys. Rev. B 33, 8892 (1986)Google Scholar
10 Gill, A. A., Barber, N. and Iqbal, M. Zafar, J. Appl. Phys. 67, 1130 (1990)Google Scholar
11 Sachse, J. U., Sveinbjörnsson, E.ö., Jost, W., Weber, J. and Lemke, H., Phys. Rev. B 55, 16176 (1997)Google Scholar
12 Ventura, L., Pichaud, B., Lanois, F., Lhorte, A., Japanese J. Appl. Phys. 40, 39383943 Part 1, N°6A, (2001).Google Scholar
13 Ventura, L., Pichaud, B., Vervisch, W., Lanois, F., Eur. Phys. J. AP 23, 3337 (2003)Google Scholar
14 Newman, R.C. and Wakefield, J., Metallurgy of Semiconductor Materials 15, 201 (1962)Google Scholar
15 Altmannshofer, L., Grundner, M., Virbulis, J. and Hage, J., ISPSD'03, 2003 IEEE 15th International Symposium on, Cambridge, England 14-17th April 2003, CD-ROM ISBN: 0-7803-7877-6Google Scholar
16 Vervisch, W., Ventura, L., Pichaud, B., Lanois, F., Lhorte, A., Solid State Phenomena Vols. 95-96 (2004) pp. 599604 Google Scholar