Published online by Cambridge University Press: 17 March 2011
Proton nuclear magnetic resonance (NMR) is an important tool for characterizing the structure of a-Si:H over a wide range of length scales including short- and medium-range order as well as nanostructures. Some of the structural information obtained by NMR is based directly on proton NMR characteristics such as the lineshape and dipolar interactions that probe distances between hydrogen atoms and hydrogen environment. Based on such information it is shown that hydrogenated multi-vacancy model for Si-H clusters is fully consistent with both experimental and theoretical observations. It is demonstrated thatchanges of short- and medium-range order can be detected by measuring the magnetic susceptibility χ. Here ï is not directly related to NMR characteristics and NMR is used merely as a sensitive and accurate magnetometer. The result indicates that a-Si:H prepared by hot-wire CVD (HWCVD) and plasma-enhanced CVD (PECVD) with high H-dilution have higher structural order compared to conventional a-Si:H. By carrying out NMR measurements on single a-Si:H thin film new NMR features were observed such as the orientation dependence of the proton NMR spectrum with respect to the magnetic field. Based on such orientation dependence, strong evidence of aligned nano-channels was obtained in some device quality a-Si:H films.