Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:50:07.253Z Has data issue: false hasContentIssue false

Proton NMR and Magnetic Susceptibility in a-Si:H

Published online by Cambridge University Press:  17 March 2011

Jonathan Baugh
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, [email protected]
Daxing Han
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, [email protected]
Alfred Kleinhammes
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, [email protected]
Yue Wu
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, [email protected]
Get access

Abstract

Proton nuclear magnetic resonance (NMR) is an important tool for characterizing the structure of a-Si:H over a wide range of length scales including short- and medium-range order as well as nanostructures. Some of the structural information obtained by NMR is based directly on proton NMR characteristics such as the lineshape and dipolar interactions that probe distances between hydrogen atoms and hydrogen environment. Based on such information it is shown that hydrogenated multi-vacancy model for Si-H clusters is fully consistent with both experimental and theoretical observations. It is demonstrated thatchanges of short- and medium-range order can be detected by measuring the magnetic susceptibility χ. Here ï is not directly related to NMR characteristics and NMR is used merely as a sensitive and accurate magnetometer. The result indicates that a-Si:H prepared by hot-wire CVD (HWCVD) and plasma-enhanced CVD (PECVD) with high H-dilution have higher structural order compared to conventional a-Si:H. By carrying out NMR measurements on single a-Si:H thin film new NMR features were observed such as the orientation dependence of the proton NMR spectrum with respect to the magnetic field. Based on such orientation dependence, strong evidence of aligned nano-channels was obtained in some device quality a-Si:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, L. and Chen, L., Appl. Phys. Lett. 63, 400 ((1993).10.1063/1.110031Google Scholar
2. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 ((1991).Google Scholar
3. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S. and J. Yang, Appl. Phys. Lett. 71, 1317 ((1997).Google Scholar
4. Williamson, D. L., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices 1999, Mat. Res. Soc. Symp. Proc. 557, pg. 251 Google Scholar
5. Liu, Xiao, White, B. E. Jr, Pohl, R. O., Iwanizcko, E., Jones, K. M., Mahan, A. H., Nelson, B. N., Crandall, R. S. and Veprek, S., Phys. Rev. Lett. 78, 4418 ((1997).Google Scholar
6. Wu, Y., Stephen, J. T., Han, D. X., Rutland, J. M., Crandall, R. S. and Mahan, A. H., Phys. Rev. Lett. 77, 2049 ((1996).10.1103/PhysRevLett.77.2049Google Scholar
7. Yue, Guozhen, Han, Daxing, Williamson, D. L., Yang, Jeffrey, Lord, Kenneth and Guha, Subhendu, Appl. Phys. Lett. 77, 3185 ((2000).Google Scholar
8. Gleason, K. K., Petrich, M. A. and Reimer, J. A., Phys. Rev. B 36, 3259 ((1987).Google Scholar
9. Reimer, J. A., Vaughn, R. W. and Knights, J. C., Phys. Rev. B 24, 3360 ((1981).Google Scholar
10. Carlos, W. E. and Taylor, P. C., Phys. Rev. B 26, 3605 ((1982).Google Scholar
11. Boyce, J. B. and Stutzmann, M., Phys. Rev. Lett. 54, 562 ((1985).Google Scholar
12. Street, R. A., Kakalios, J., and Hayes, T. M., Phys. Rev. B 34, 3030 ((1986).Google Scholar
13. Vanacek, M. et al. , Proc. of the 12th European Photovoltaic Solar Energy Conf., 354 (1994).Google Scholar
14. Fritzsche, H. and Hudgens, S. J. (unpublished).Google Scholar
15. Sahu, T. and Das, N., Phys. Rev. B 45, 13336 ((1992).Google Scholar
16. Candea, R. M., Hudgens, S. J., Kastner, M., Knights, J. C., Phil. Mag. B 37, 119 ((1978).10.1080/13642817808245312Google Scholar
17. Zhao, Y., Zhang, D., Kong, G., Pan, G., and Liao, X., Phys. Rev. Lett. 74, 558 ((1995).Google Scholar
18. Williamson, D. L., Mahan, A. H., Nelson, B. P. and Crandall, R. S., Appl. Phys. Lett. 55, 783 ((1989).Google Scholar
19. Levy, D. H. and Gleason, K. K., J. Vac. Sci. Technol. A 11, No. 1, 195 ((1993).Google Scholar
20. Tuttle, B., Adams, J. B., Phys. Rev. B 56, 4565 ((1997).10.1103/PhysRevB.56.4565Google Scholar
21. Kittel, C., Introduction to Solid State Physics (6th Ed., John Wiley and Sons, New York, (1986), ppg. 363-368Google Scholar
22. Slichter, C. P., Principles of Magnetic Resonance (3rd Ed., Springer-Verlag,Berlin, 1990), p. 79.Google Scholar
23. Williamson, D. L., private communication.Google Scholar
24. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D. and Mahan, A. H., Appl. Phys. Lett. 74,1860 (1999).Google Scholar