Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T19:51:56.630Z Has data issue: false hasContentIssue false

Protein-based nano-structure fabrication in aqueous solution: Bio Nano Process

Published online by Cambridge University Press:  08 October 2013

Ichiro Yamashita*
Affiliation:
Graduate School of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma, Japan.
Get access

Abstract

A new nano-fabrication process, utilizing protein supramolecules, biomineralization, and nano-etching was proposed, which was named Bio Nano Process (BNP). The main processes of the BNP include the nanoparticle (NP) or nanowire (NW) synthesis utilizing bio-template (biomineralization) and nanostructure fabrication utilizing self-organization of protein supramolecules. Proteins are so designed to produce the final structures. The space where nano functional structures are fabricated is named an “Active Bio-field”. It was proven that the process has vast potential to be applied to a wide range of quantum effect base nano-devices and thin film devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yamashita, I. Thin. Solid. Films 393, 12 (2000).CrossRefGoogle Scholar
Harrison, P. M., Andrews, S. C., Artymuik, P. J., Ford, G. C., Guest, J. R., Hirzmann, J., Lawson, D. M., Livingstone, J. C., Smith, J. M. A., Treffry, A., Yewdall, S. J.,. Adv. Inorg. Chem. 36, 449 (1991).CrossRefGoogle Scholar
Bozzi, M., Mignogna, G., Stefanini, S., Barra, D., Longhi, C., Valenti, P., Chiancone, E., J. Biol. Chem. 272, 3259 (1997).CrossRefGoogle Scholar
Iwahori, K., Yamashita, I., J. of cluster Science 18(2), 358370 (2007).CrossRefGoogle Scholar
Kase, D., Kulp, J. L., Yudasaka, M., Evans, J.S., Iijima, S., Shiba, K., Langmuir 20(20), 8939 (2004).CrossRefGoogle Scholar
Matsui, T., Matsukawa, N., Iwahori, K., Sano, K., Shiba, K., Yamashita, I., Langmuir 23(4), 1615 (2007).CrossRefGoogle ScholarPubMed
Matsui, T., Matsukawa, N., Iwahori, K., Sano, K., Shiba, K., Yamashita, I., Jpn. J. Appl. Phys, 46, L713 (2007).CrossRefGoogle Scholar
Kumagai, S., Yoshii, S., Yamada, K., Matsukawa, N., Fujiwara, T.. Iwahori, K., Yamashita, I., Appl. Phys. Lett. 88, 153103 (2006).CrossRefGoogle Scholar
Kumagai, S., Yoshii, S., Yamada, K., Matsukawa, N., Iwahori, K., Yamashita, I., Jpn. J. Appl. Phys. 45(10B), 8311 (2006).CrossRefGoogle Scholar
Yoshii, S., Kumagai, S., Nishio, K., Kadotani, A., Yamashita, I., Appl. Phys. Lett. 95, 133702 (2009).CrossRefGoogle Scholar
Okuda, M., Iwahori, K., Yamashita, I., Yoshimura, H., Biotech. Bioeng. 84, 187 (2003).CrossRefGoogle Scholar
Kirimura, H., Uraoka, Y., Fuyuki, T., Okuda, M., Yamashita, I., Appl. Phys. Lett. 86, 262106 (2005).CrossRefGoogle Scholar
Yamasaki, K., Ochi, M., Sugawara, Y., Yamashita, I., and Uraoka, Y., J. Korean Phys. Soc. 56(3), 842 (2010).Google Scholar
Uenuma, M., Zheng, B., Imazawa, T., Horita, M., Nishida, T., Ishikawa, Y., Watanabe, H., Yamashita, I., Uraoka, Y., Appl. Surf. Sci. 258(8), 3410 (2012).CrossRefGoogle Scholar
Kobayashi, M., Kumagai, S., Zheng, B., Uraoka, Y., Douglas, T. and Yamashita, I., Chem. Comm. 47, 3475 (2012).CrossRefGoogle Scholar
Kobayashi, M., Seki, M., Tabata, H., Watanabe, Y. and Yamashita, I., Nano Lett. 10, 773 (2010).CrossRefGoogle Scholar