Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:48:58.540Z Has data issue: false hasContentIssue false

Properties of Yttrium Oxide Thin Films on Silicon (100) Prepared by Evaporation of Yttrium in Atomic Oxygen

Published online by Cambridge University Press:  15 February 2011

J. Hudner
Affiliation:
Solid State Electronics, Royal Institute of Technology, E229, S-164 40 Kista, Sweden
H. Ohlsén
Affiliation:
Industrial Microelectronics Center, S-164 21 Kista, Sweden
E. Fredriksson
Affiliation:
Inorganic Chemistry, Uppsala University, P.O. Box 531, S-751 21 Uppsala, Sweden
Get access

Abstract

Thin layers of Y2O3 have been prepared on silicon (100) by an activated reactive evaporation process involving evaporation of metal Y in an atomic oxygen plasma. The presence of the oxygen plasma was found to be crucial for the formation of homogeneous Y2O3 films on Si. The formation of Y2O3 films on Si (100) at different substrate temperatures was investigated. X-ray diffraction analysis showed that Y2O3 films formed between 300 °C and 650 °C were (111) textured while Y2O3 prepared at lower substrate temperatures (80 °C) exhibited mixed orientations. Rutherford backscattering spectrometry indicated that films were stoichiometric. No pronounced channeling was observed in films grown at 350 °C, suggesting polycrystalline film structures. Atomic force microscopy revealed very smooth surface morphologies with average surface roughness < 20 Å for films 700 Å thick deposited at 350 °C. Secondary ion mass spectroscopy indicated the abundance of intermediate layers in the film-substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gurvitch, M., Manchanda, L., and Gibson, J.M., Appl. Phys. Lett. 51, 919 (1987).CrossRefGoogle Scholar
2. Fukumoto, H., Imura, T., and Osaka, Y., Appl. Phys. Lett. 55, 360 (1989).CrossRefGoogle Scholar
3. Harada, K., Nakanishi, H., Itozaki, H., and Yazu, S., Jpn. J. Appl. Phys. 30, 934 (1991).CrossRefGoogle Scholar
4. Mattheé, T., Wecker, J., Behner, H., Friedl, G., Eibl, O., and Samwer, K., Appl. Phys. Lett. 61, 1240 (1992).CrossRefGoogle Scholar
5. Kalkur, T.S. and Kwor, R.Y., SPIE Proceedings 1189, 198 (1989).CrossRefGoogle Scholar
6. Sharma, R.N., Lakshmikumar, S.T., and Rastogi, A.C., Thin Solid Films 199, 1 (1991).CrossRefGoogle Scholar
7. Cranton, W.M., Spink, D.M., Stevens, R., and Thomas, C.B., Thin Solid Films 226, 156 (1993).CrossRefGoogle Scholar
8. Varhue, W. J., Massimo, M., Carrulli, J. M., Baranauskas, V., Adams, E., and Broitman, E., J. Vac. Sci. Technol. A 11, 1870 (1993).CrossRefGoogle Scholar
9. Hudner, J., Östling, M., Ohlsén, H., Stolt, L., Nordblad, P., Ottosson, M., Villegier, J.-C., Moriceau, H., Weiss, F., and Thomas, O., J. Appl. Phys. 73, 3096 (1993).CrossRefGoogle Scholar
10. Locquet, J.-P. and Mächler, E., J. Vac. Sci. Technol. A 10, 3100 (1992).CrossRefGoogle Scholar
11. Lee, Y.K., Fujimura, N., and Ito, T., J. of Alloys and Compounds 193, 289 (1993).CrossRefGoogle Scholar
12. Hudner, J. (unpublished).Google Scholar
13. Onisawa, K., Fuyama, M., Tamura, K., Taguchi, K., Nakayama, T., and Ono, Y. A., J. Appl. Phys. 68, 719 (1990).CrossRefGoogle Scholar
14. Fenner, D.B., Viano, A.M., Fork, D.K., Connell, G.A.N., Boyce, J.B., Ponce, F.A., and Tramontana, J.C., J. Appl. Phys. 69, 2176 (1991).CrossRefGoogle Scholar
15. Hudner, J. and Zetterling, C.-M. (to be published).Google Scholar