Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:40:05.440Z Has data issue: false hasContentIssue false

Properties of Ultrathin Amorphous Silicon Nitride Films on III V Semiconductors

Published online by Cambridge University Press:  22 February 2011

L.J. Huang
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7
R. W. M. Kwok
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7
W. M. Lau
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7
H. T. Tang
Affiliation:
Department of Physics, University of Western Ontario, London, Ontario N6A 3K7
W. N. Lennard
Affiliation:
Department of Physics, University of Western Ontario, London, Ontario N6A 3K7
I. V. Mitchell
Affiliation:
Department of Physics, University of Western Ontario, London, Ontario N6A 3K7
Peter J. Schultz
Affiliation:
Department of Physics, University of Western Ontario, London, Ontario N6A 3K7
D. Landheer
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario K1A OR6
Get access

Abstract

Properties of ultrathin (— lOnm) silicon nitride films on single crystal Si, InP and GaAs have been studied using Raman spectroscopy, medium energy ion scattering (MEIS), variable-energy positron annihilation spectroscopy and x-ray photoelectron spectroscopy (XPS). The silicon nitride films were prepared by remote microwave plasma chemical vapour deposition (RPCVD). The results showed that oxidation of the film due to air exposure was restricted to the near surface with an oxygen penetration depth no greater than 2 nm. The residual stress in the as-grown films was substrate-dependent. For films on Si (100), the film induced residual stress was compressive with a value of 0.5GPa. Annealing at 500°C for 60 minutes resulted in a complete release of the residual stress. Vacuum annealing at a temperature below 500° C also led to changes of the electrical properties in the films but not the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robertson, J., Phil. Mag. B63, 47 (1991).Google Scholar
2. Kapoor, V.J., and Hankins, K.T. eds., Silicon nitride and silicon dioxide thin insulating films, (Electrochemical Society, Pennington, 1987).Google Scholar
3. Habraken, F.H.P.M. ed., Low pressure chemical vapor deposited silicon oxynitride films, material and application, (Springer, Heidelberg, 1991).Google Scholar
4. De Wolf, I., Vanhellemont, J., Rodriguez, A. R-, Horstrom, H., and Maes, H.E., J. Appl. Phys. 71, 898 (1992).Google Scholar
5. Hakvoort, R.A., Schut, H., Veen, A., Bik, W.M.A., and Habraken, F.H.P.M., Appl. Phys. Lett. 59, 1687 (1991).Google Scholar
6. Pearce, C.W., Fetcho, R.F., Gross, M.D., Koefer, R.F., and Pudliner, R.A., J. Appl. Phys. 71, 1838 (1992).Google Scholar
7. Okada, Y., Nakajima, S-I., Appl. Phys. Lett. 59, 1066 (1991).Google Scholar
8. Paloura, E.C., Logothetidis, S., Boultadakis, S., and Ves, S., Appl. Phys. Lett. 59, 280 (1991);Google Scholar
Paloura, E.C., Lagowski, J., and Gatos, H.C., J. Appl. Phys. 69, 3995 (1991).Google Scholar
9. Domansky, K., Petelenz, D., and Janata, J., Appl. Phys. Lett. 60, 2074 (1992).Google Scholar
11. Bhattacharya, R.S., and Holloway, P.H., Appl. Phys. Lett. 38, 545 (1981).Google Scholar
10. Landheer, D., Kwok, W., and Lau, W.M., (to be published).Google Scholar
12. Huang, L.J., and Lau, W.M., Appl. Phys. Lett. 60, 1108 (1992), and references therein.Google Scholar
13. Landheer, D., Skinner, N.G., Jackman, T.E., Thompson, D.A., Simmons, J.G., Stevanovic, D.V., and Khatamain, D., J. Vac. Sci. Technol. A9, 2594 (1991).Google Scholar
14. Vos, M. and Mitchell, I.V.; Phys. Rev. B46, XXX (1992); Nucl. Instrum. Method B, (1992). at press.Google Scholar
15. Schultz, P.J., Nucl. Instrum. Methods B30, 94 (1988).Google Scholar
16. Huang, L.J., Lau, W.M., Simpson, P.J., and Schultz, P.J., Phys. Rev. B46, 4086 (1992).Google Scholar
17. Sodhi, R.N.S., Lau, W.M., and Ingrey, S.I.J., J. Vac. Sci. Technol. A7, 663 (1989).Google Scholar
18. Chu, W.K., Mayer, J.W., and Nicolet, M-A., Backscattering spectrometry, (Academic Press, New York, 1978).Google Scholar
19. Huang, L.J., Kwok, R.W.M., Lau, W.M., Tang, H.T., Lennard, W.N., Mitchell, I.V., Schultz, P.J., Appl. Phys. Lett. 63 (2) (1993), at press.Google Scholar
20. Menendez, J. and Cardona, M., Phys. Rev. B29, 2051 (1984).Google Scholar
21. Bendow, B., Lipson, H.G., and Yukon, S.P., Phys. Rev. B16, 2684 (1977).Google Scholar
22. Mitra, S.S., and Massa, N.E., in Band theory and transport properties, ed. by Paul, W. (North-Holland, Amsterdam, 1982) p. 81.Google Scholar
23. Details of the measurement and interpretation of W parameters, which are related to the width of the annihilation gamma-ray lineshape, can be found in various other publications, including reference 9, 15 & 16 above.Google Scholar
24. Wei, L., Tabuki, Y., Konda, H., Tanigawa, S., J. Appl. Phys. 70, 7543 (1991).Google Scholar