Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:41:30.019Z Has data issue: false hasContentIssue false

Properties of the EL2 Level in Organometallic Ga1−xAlxAs

Published online by Cambridge University Press:  26 February 2011

A. Ben Cherifa
Affiliation:
Laboratoire de Physique de la Matière, INSA de Lyon, 20, Avenue A. Einstein, 69621 Villeurbanne Cèdex, France
R. Azoulay
Affiliation:
CNET Bagneux, 196 Avenue H. Ravera, 92220 Bagneux, France
G. Guillot
Affiliation:
Laboratoire de Physique de la Matière, INSA de Lyon, 20, Avenue A. Einstein, 69621 Villeurbanne Cèdex, France
Get access

Abstract

We have studied by means of deep level transient spectroscopy and photocapacitance measurements deep electron traps in undoped Ga1−xAlxAs of n-type grown by metalorganic chemical vapor deposition with 0≤x≤ 0.3. A dominant deep electron trap is detected in the series of alloys. Its activation energy is found at EC-0.8 eV in GaAs and it increases with x. Its concentration is found nearly independent of x. For the first time we observed for this level in the Ga1−xAlxAs alloys, the photocapacitance quenching effect typical for the EL2 defect in GaAs thus confirming clearly that EL2 is also created in MOCVD Ga1−xAlxAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bhattacharya, P.K., Ku, J.W., Dwen, S.T.J., Aebi, V., Cooper, B.C. and Moon, R.L.Appl.Phys.Lett. 36, 304 (1980)Google Scholar
2.Samuelson, L., Omling, P., Titze, H. and Grimmeiss, H.G., J.Cryst.Growth 55, 164 (1981)Google Scholar
3.Wagner, E.E., Mars, D.E., Hom, G. and Stringfellow, G.B., J.Appl.Phys. 51, 5434 (1980)Google Scholar
4.Matsumoto, T., Bhattacharya, P.K. and Ludowise, M.J., Appl.Phys.Lett. 41, 662 (1982)Google Scholar
5.Johnson, N.M., Burnham, R.D., Fekete, D. and Yingling, D. in Defects in Semiconductors, edited by Narayan, J. and Tan, T.Y. (Mat.Res.Sc.Proc., Pittsburg, PA (1981)) pp.481486Google Scholar
6.Yamanaka, K., Naritsuka, S., Kanamoto, K., Mihara, M. and Ishii, M., J.Appl.Phys. 61, 5062 (1987)Google Scholar
7.Vincent, G., Bois, D. and Chantre, A., J.Appl.Phys. 53, 3643 (1982)Google Scholar
8.Azoulay, R., Jusserand, B., Roux, G. Le, Arsart, P. and Dugrand, L., J. of Cryst. Growth 77, 546 (1986)Google Scholar
9.Best, J.J., Appl.Phys.Lett. 34, 522 (1979)Google Scholar
10.Zou, B.L., Ploog, K., Gmelin, E., Zheng, X.Q. and Schulz, M., Appl.Phys. A28, 223 (1982)Google Scholar
11.Samuelson, L. and Omling, P., Phys.Rev.B 34, 5603, (1986)Google Scholar
12.Baraff, G.A. and Schluter, M., Phys.Rev.Lett. 55, 2340 (1985)Google Scholar
13.Bardeleben, H.J. Von, Stievenard, D., Deresmes, D., Huber, A. and Bourgoin, J.C., Phys.Rev.B 34, 7192 (1986)Google Scholar