Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T12:55:34.444Z Has data issue: false hasContentIssue false

Properties of Sputter Deposited ZnO Films Co-doped with Lithium and Phosphorus

Published online by Cambridge University Press:  14 January 2013

T. N. Oder
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, U.S.A.
A. Smith
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, U.S.A.
M. Freeman
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, U.S.A.
M. McMaster
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555, U.S.A.
B. Cai
Affiliation:
Department of Physics, Brooklyn College of the CUNY, Brooklyn, NY 11210, U.S.A.
M. L. Nakarmi
Affiliation:
Department of Physics, Brooklyn College of the CUNY, Brooklyn, NY 11210, U.S.A.
Get access

Abstract

Thin films of ZnO co-doped with lithium and phosphorus were deposited on sapphire substrates by RF magnetron sputtering. The films were sequentially deposited from ultra pure ZnO and Li3PO4 solid targets. Post deposition annealing was carried using a rapid thermal processor in O2 and N2 at temperatures ranging from 500 °C to 1000 °C for 3 min. Analyses performed using low temperature photoluminescence spectroscopy measurements reveal luminescence peaks at 3.359, 3.306, 3.245 eV for the co-doped samples. The x-ray diffraction 2θ-scans for all the films showed a single peak at about 34.4° with full width at half maximum of about 0.17°. Hall Effect measurements revealed conductivities that change from p-type to n-type over time.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wagner, M. R., Haboeck, U., Zimmer, P., Hoffmann, A., Lautenschläger, S., Neumann, C., Sann, J. and Meyer, B. K., Proc. of SPIE 6474, 64740X–1 (2007).Google Scholar
Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J. and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Avrutin, V., Silversmith, D. J., and Morkoç, H., Proc IEEE Inst. Electr. Electron. Eng. 98(7), 12691280 (2010).CrossRefGoogle Scholar
Park, C. H., Zhang, S. B., and Wei, Su-Huai, Phys. Rev. B 66, 073202 (2002).CrossRefGoogle Scholar
Vlasenko, L. S. and Watkins, G. D., Phys. Rev. B 72, 035203 (2005).CrossRefGoogle Scholar
Janotti, A. and Van deWalle, C. G., Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
Duan, X. Y., Yao, R. H. and Zhao, Y. J.. Appl. Phys. A 91, 467472 (2008)CrossRefGoogle Scholar
Park, C.H., Zhang, S.B. and Wei, S.H., Phys. Rev. B 66, 073 202 (2002).Google Scholar
Look, D. C., Jones, R. L., Sizelove, J. R., Garces, N. Y., Giles, N. C., and Halliburton, L. E., Phys. Stat. Sol. a 195, 171 (2003).CrossRefGoogle Scholar
Fan, X. M., Lian, J. S. and Guo, Z. X., Appl. Surf. Sci. 239, 176 (2005).CrossRefGoogle Scholar
Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H. and Chua, S. J., J. Appl. Phys. 98, 013505 (2005).CrossRefGoogle Scholar
Kang, S. J., Shin, H.-H. and Yoon, Y.-S., Journal of the Korean Physical Society 51(1), 183188 (2007).CrossRefGoogle Scholar
McCluskey, M. D. and Jokela, S. J. J. Appl. Phys. 106, 071101(2009).CrossRefGoogle Scholar
Yamamoto, T.. Phys. Stat. Sol.(a) 193(3), 423433 (2002).3.0.CO;2-X>CrossRefGoogle Scholar
Lu, J. G., Zhang, Y.Z., Ye, Z.Z., Zhu, L.P., Wang, L., Zhao, B.H. and Liang, Q.L., Appl. Phys. Lett. 88, 222 114 (2006).CrossRefGoogle Scholar
Yu, D., Hu, L., Qian, S., Zhang, H., Len, S. A., Len, L. K., Fu, Q., Chen, X. and Sun, K., J. Phys. D: Appl. Phys. 42, 055110 (2009).CrossRefGoogle Scholar