Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T06:56:43.175Z Has data issue: false hasContentIssue false

Properties of Single-Crystal Silicon Films on Amorphous SiO2 on Single-Crystal Cubic Zirconia Substrates

Published online by Cambridge University Press:  22 February 2011

I. Golecki
Affiliation:
Rockwell International Corporation, Defense Electronics Operations, Microelectronics Research and Development Center
R. L. Maddox
Affiliation:
Rockwell International Corporation, Defense Electronics Operations, Microelectronics Research and Development Center
H. L. Glass
Affiliation:
Science Center 2, 3370 Miraloma Avenue, Anaheim, CA 92803.
A. L. Lin
Affiliation:
Science Center 2, 3370 Miraloma Avenue, Anaheim, CA 92803.
H. M. Manasevit
Affiliation:
Rockwell International Corporation, Defense Electronics Operations, Microelectronics Research and Development Center
Get access

Abstract

A new approach to achieving a large-area silicon-on-insulator technology without pre-patterning is described. (100) Si films are first grown epitaxially on (100) yttria-stabilized cubic zirconia (YSZ) substrates by the pyrolysis of SiH4. The Si side of the <Si>/<YSZ>interface is then oxidized in pyrogenic steam (at 925 °C) or dry oxygen (at 1100°C) to form the structure <Si>/amorphous SiO2/<YSZ>. The oxidation occurs by the rapid diffusion of oxidants through the 0.42 mm thick YSZ substrate; e.g., a 0.3 μm SiO2 layer is obtained in 6 h in steam. The samples are analyzed by Rutherford backscattering and channeling spectrometry, X-ray diffraction, infra-red reflectance, Auger electron spectroscopy and sheet resistance measurements. In addition to forming the preferred Si/SiO2 interface, the back-side oxidation eliminates the most defective part of the Si film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Golecki, I., Manasevit, H.M., Moudy, L.A., Yang, J.J., and Mee, J.E., Appl. Phys. Lett. 42, 501 (1983).CrossRefGoogle Scholar
2. Golecki, I., Maddox, R.L., Glass, H.L., Lin, A.L., Raab, T.J., and Manasevit, H.M., J. Electron. Mater. 14 (in press, 1985).CrossRefGoogle Scholar
3. Lin, A.L. and Golecki, I., J. Electrochem. Soc. 132, 239 (1985).CrossRefGoogle Scholar
4. Golecki, I., Mat. Res. Soc. Symp. Proc. Vol.33, 3 (1984).Google Scholar
5. Manasevit, H.M., Golecki, I., Moudy, L.A., Yang, J.J., and Mee, J.E., J. Electrochem. Soc. 130, 1752 (1983).CrossRefGoogle Scholar
6. Golecki, I., Final Technical Report # AFWAL-TR-83–4137 (January 1984).Google Scholar
7. Golecki, I., Nucl. Instrum. and Methods in Phys. Res. 218, 63 (1983).CrossRefGoogle Scholar
8. Golecki, I., Glass, H.L., Kinoshita, G., and Magee, T.J., Applic. of Surf. Sci. 9, 299 (1981).Google Scholar
9. Smith, R.T. and Weitzel, C.E., J. Cryst. Growth 58, 61 (1982).Google Scholar
10. Kjar, R.A., Haynes, P.E., and Maurits, J., Final Technical Report # DELETTR-80–0311–3 (November 1983).Google Scholar
11. Dial, J.E., Gong, R.E., and Fordemwalt, J.N., J. Electrochem. Soc. 115, 326 (1968).Google Scholar
12. Bøgh, E., Can. J. Phys. 46, 653 (1968).CrossRefGoogle Scholar
13. Golecki, I., Manasevit, H.M., Moudy, L.A., Yang, J.J., Mee, J.E., and Magee, T.J., paper # D-8, presented at the 24th Electronic Materials Conference, Fort Collins, CO, June 1982.Google Scholar
14. (a)Dupuy, M., J. Microsc. Spectrosc. Electron. 9, 163 (1984). (b) D. Pribat, L.M. Mercandalli, M. Croset, D. Dieumegard, and J. Siejka, Mater. Lett. 2, 524 (1984). (c) L.M. Mercandalli, D. Pribat, M. Dupuy, C. Arnodo, D. Rondi, and D. Dieumegard, paper # D.3.12, presented at the Symp. on Layered Structures, Epitaxy and Interfaces, 1984 Fall Meeting of the Materials Research Society, Boston, MA, November 1984 (J.M. Gibson and L.R. Dawson, eds.).Google Scholar
15. Glass, H.L. (unpublished).Google Scholar
16. Campisano, S.U., Foti, G., Rimini, E., and Picraux, S.T., Nucl. Instrum. And Methods 149, 371 (1978).Google Scholar
17. Foti, G., Csepregi, L., Kennedy, E.F., Mayer, J.W., Pronko, P.P., and Rechtin, M.D., Phil. Mag. A 37, 591 (1978).CrossRefGoogle Scholar
18. Reed, T.B., Free Energy of Formation of Binary Compounds (MIT Press: Cambridge, MA, 1971).Google Scholar
19. Wagner, C., Ber. Bunsenges. Phys. Chem. 72, 778 (1968).CrossRefGoogle Scholar
20. Patel, J.R. and Kato, N., J. Appl. Phys. 44, 971 (1973).CrossRefGoogle Scholar
21. EerNisse, E.P., Appl. Phys. Lett. 30, 290 (1977) and 35, 8 (1979).CrossRefGoogle Scholar