Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:28:30.443Z Has data issue: false hasContentIssue false

Properties of Pr-based high k dielectric films obtained by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  28 July 2011

Raffaella Lo Nigro
Affiliation:
IMM, sezione di Catania, CNR Stradale Primosole n 50, I-95121 Catania, Italy
Roberta G. Toro
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, and INSTM, UdR Catania. Viale Andrea Doria n 5, I-95125 Catania, Italy.
Graziella Malandrino
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, and INSTM, UdR Catania. Viale Andrea Doria n 5, I-95125 Catania, Italy.
Vito Raineri
Affiliation:
IMM, sezione di Catania, CNR Stradale Primosole n 50, I-95121 Catania, Italy
Ignazio L. Fragalà
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, and INSTM, UdR Catania. Viale Andrea Doria n 5, I-95125 Catania, Italy.
Get access

Abstract

We report the results of a recent study on the deposition of praseodymium oxides thin films on silicon substrates by Metal-Organic Chemical Vapor Deposition (MOCVD). A suited Pr(III) β-diketonate precursor has been used as the metal source and the deposition conditions have been carefully selected because of a large variety of possible PrO2−x (x= 0−0.5) phases. Pr2O3 films have been obtained in a hot-wall MOCVD reactor under non oxidising ambient at 750°C deposition temperature. The structural and morphological characteristics of Pr2O3 films have been carried out by X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). Chemical compositional studies have been performed by X- ray photoelectron spectroscopic (XPS) analysis and a fully understanding of the MOCVD process has been achieved. Preliminary electrical measurements point to MOCVD as a reliable growth technique to obtain good quality praseodymium oxide based films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., and Timp, G., Nature 399, 758 (1999).Google Scholar
2. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
3. Guha, S., Cartier, E., Gribelyuk, M.A., Bojarczuk, N. A., and Copel, M. C., Appl. Phys. Lett. 77, 2710 (2000).Google Scholar
4. Kwo, J., Hong, M., Koetan, A. R., Queeney, K. T., Chabal, Y. J., Mannaerts, J.- P., Boone, T., Krajewski, J. J., Segent, A. M., and Rosamilia, J. M., Appl. Phys. Lett. 77, 130 (2000).Google Scholar
5. Osten, H. J., Liu, J. P., and Mussig, H. J., Appl. Phys. Lett. 80, 297 (2002).Google Scholar
6. Liu, J. P., Zaumseil, P., Bugiel, E., and Osten, H. J., Appl. Phys. Lett. 79, 671 (2002).Google Scholar
7. Osten, H. J., Liu, J. P., Mussig, H. J., and Zaumseil, P., Microelectr. Reliability 41, 991 (2001).Google Scholar
8. Tarsa, E. J., Speck, J. S., and Robinson, McD., Appl. Phys. Lett. 63, 539 (1993).Google Scholar
9. Fork, D. K., Fenner, D. B., and Geballe, T. H., Appl. Phys. Lett. 68, 4316 (1990).Google Scholar
10 Nigro, R. Lo, Toro, R., Malandrino, G., Raineri, V., and Fragalà, I. L., Adv. Mater. 15, 1071 (2003).Google Scholar
11. Nigro, R. Lo, Raineri, V., Bongiorno, C., Toro, R., Malandrino, G., and Fragalà, I. L., Appl. Phys. Lett. 83, 129 (2003).Google Scholar
12. Hyde, G., Bevan, D.J.M., Eyring, L., Proc. Conf. Rare earth Res. 1964, 277.Google Scholar
13 Eyring, L., Baenziger, N.C, J. Appl. Phys. 1962, 33, 428.Google Scholar
14 Wilk, G., and Wallace, R., Appl. Phys. Lett. 74, 2854 (1999).Google Scholar
15. Wilk, G., and Wallace, R., Appl. Phys. Lett. 76, 112, (2000).Google Scholar
16. Wilk, G., Wallace, R., and Anthony, J., J. Appl. Phys. 87, 484, (2000).Google Scholar