Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:11:33.737Z Has data issue: false hasContentIssue false

Properties of Electron Emitting Diode Fabricated with Single-Crystalline Diamond

Published online by Cambridge University Press:  10 February 2011

Toshimichi Ito
Affiliation:
Department of Electrical Engineering, Osaka University, Suita, Osaka 565-0871, Japan, [email protected]
Masaki Nishimura
Affiliation:
Department of Electrical Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Get access

Abstract

Highly efficient electron emitting diodes have been fabricated using single-crystalline diamond films epitaxially grown on high-pressure synthesized (100) diamond. These diodes have an internal electrode of a graphitized layer buried below an overgrown diamond layer with a very high resistivity, the structure of which is formed by a combination of heavy ionimplantation and overgrowth techniques. The efficiency of electron emissions from sufficiently hydrogenated p-type diamond surfaces reached 100% in the best case. It is found that H atoms can passivate internal defects created during the ion implantation process. The mechanism of the high efficiency is discussed in relation to electron-hole creations in the thin diamond layer under extremely high electric fields of 107 V/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, C., Garcia, A., Ingram, D.C., Lake, M. and Koldesch, M.E., Electron. Lett. 27, 1459(1991).Google Scholar
2. Xu, N.S., Latham, R.V. and Tzeng, Y., Electron. Lett. 29, 1596(1993).Google Scholar
3. Okano, K. and Gleason, K.K., Electron. Lett. 31, 74(1995).Google Scholar
4. Kondo, T., Nagao, M., Goto, Y., Tsuji, H. and Ishikawa, J., Jpn. J. Appl. Phys., to be published.Google Scholar
5. Himpsel, F.J., Knapp, J.A., Vechten, J.A. van and Eastman, D.E., Phys. Rev. B, 20, 624(1979).Google Scholar
6. Pate, B.B., Surf. Sci. 165, 83(1986).Google Scholar
7. Weide, J.van der, Zhang, Z., Baumann, P.K., Wensell, M.G., Bernholc, J. and Nemanich, R.J., Phys. Rev. B 50, 5803(1994).Google Scholar
8. Eimori, N., Mori, Y., Hatta, A., Ito, T. and Hiraki, A., Jpn. J. Appl. Phys. 33, 6312(1994).Google Scholar
9. Geis, M.W., Efremow, N.N., Woodhouse, J.D., McAleese, M.D., Marchywka, M., Socker, D.G. and Hochedez, J.F., IEEE Electron Device Lett. 12, 456(1991).Google Scholar
10. Brandes, G.R., Beetz, C.P., Feger, C.A. and Write, R.L., Diamond and Related Mater. 4, 586(1995).Google Scholar
11. Hatta, A., Ogawa, K., Eimori, N., Deguchi, M., Kitabatake, M., Ito, T. and Hiraki, A., Appl. Surf. Sci. 117/118, 592(1997).Google Scholar
12. Ito, T., Ogawa, K., Deguchi, M., Kitabatake, M. and Hatta, A., to be published.Google Scholar
13. Nishimura, M., Hatta, A. and Ito, T., Jpn. J. Appl. Phys. 37, LIO11(1998).Google Scholar
14. Nishimura, M., Hatta, A. and Ito, T., Diamond and Related Mater. 8(2), (1999).Google Scholar
15. Ito, T., Nishimura, M. and Hatta, A., Appl. Phys. Lett. 73, 3739(1998).Google Scholar
16. Ristein, J., Stein, W. and Ley, L., Phys. Rev. Lett. 78, 1803(1997).Google Scholar
17. Xu, N.S., High Voltage Vacuum Insulation, ed. Latham, R.V., Academic Press, London, 1995, pp. 115.Google Scholar