Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:06:04.656Z Has data issue: false hasContentIssue false

Properties of Crucible Materials for Bulk Growth of AlN

Published online by Cambridge University Press:  01 February 2011

Glen A. Slack
Affiliation:
Crystal IS Inc., Latham, NY 12110, USA
Jon Whitlock
Affiliation:
Crystal IS Inc., Latham, NY 12110, USA
Ken Morgan
Affiliation:
Crystal IS Inc., Latham, NY 12110, USA
Leo J. Schowalter
Affiliation:
Crystal IS Inc., Latham, NY 12110, USA
Get access

Abstract

A variety of different crucible materials have been suggested and/or employed for the sublimation-recondensation growth of AlN single crystals above 2000 C. Representative materials all have melting points well above 2300 C, a reasonable degree of chemical compatibility with AlN, relatively low vapor pressures, and relatively small thermal expansion coefficients. We analyze the current state of knowledge on crucible materials such as C, W, Re, W-Re alloys, BN, HfN, HfC, NbC, TaC, Ta2C, TaN, ZrC and ZrN with respect to published bulk AlN growth conditions. Crucible materials pyrolytic graphite, pyrolytic BN, and W have integrated thermal contraction values (upon cooling from growth temperatures) that are less than that of AlN; the other materials have larger values. The lowest vapor pressure materials in a nitrogen atmosphere are W, TaC, and Re; thus they are expected to yield higher purity crystals than the other candidates. The materials C, BN, Hf, and ZrN are expected to contribute to higher impurity levels in the AlN crystals.

Type
articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schlesser, R., Sitar, Z., J. Crystal Growth 234 (2002) 349353.Google Scholar
[2] Singh, N.B., Berghmans, A., Zhang, H., Wait, T., Clarke, R.C., Zingaro, J., Golombeck, J.C., Zingaro, J., Golombeck, L.C. J. Crystal Growth 250 (2003) 107112.Google Scholar
[3] Bickermann, M., Epelbaum, B.M., Winnacker, A., Phys. Stat. Sol. (c), 14 (2003)/DOI 10.1002/pssc.2003302380.Google Scholar
[4] Shi, Y., Xie, Z.Y., Liu, L.H., Liu, B., Edgar, L.H., Kuball, M., J. Crystal Growth 233 (2001) 177186.Google Scholar
[5] Bickermann, M., Epelbaum, B.M., Winnacker, A., Mater. Sci. Forum 433–436 (2003) 983986.Google Scholar
[6] Schlesser, R., Dalmau, R., Sitar, Z., J. Crystal Growth 241 (2002) 416420.Google Scholar
[7] Wu, B., Ma, R., Zhang, H., Dudley, M., Schlesser, R., Sitar, Z., J. Crystal Growth 253 (2003) 326339.Google Scholar
[8] Edgar, J. H., Liu, L., Zhuang, D., Chaudhuri, J., Kuball, M., Rajasingam, S., J. Crystal Growth 246 (2002) 187193.Google Scholar
[9] Segal, A.S., Karpov, S. Yu, Makarov, Yu. N., Mokhov, E.N., Roenkov, A.D., Ramm, M.G., Vodakov, Yu. A., J. Crystal Growth 211 (2000) 6872.Google Scholar
[10] Slack, G.A., McNelly, T.F., J. Crystal Growth 34, (1976) 263.Google Scholar
Slack, G.A., McNelly, T.F., J. Crystal Growth 42 (1977) 560565.Google Scholar
[11] Schowalter, L.J., Slack, G.A., Whitlock, J.B., Morgan, K., Schujman, S.B., Raghothamachar, B., Dudley, M., Evans, K.E., Phys. Stat. Sol. (c). 14 (2003) /DOI0.1002/pssc.200303462.Google Scholar
[12] Dalmau, R., Schlesser, R. and Sitar, Z., MRS Fall Meeting, (Vol. 798) Symposium Y2.9, 12 /1/2003.Google Scholar
[13] Kubaschewski, O., Evans, E.L. and Alcock, C.B., “Metallurgical Thermochemistry”, Pergamon, Oxford 1967, Fourth Edition, pg. 58.Google Scholar
[14] Slack, G.A. and Bartram, S.F., J. Appl. Phys. 46 89 (1975).Google Scholar
[15] Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R., “Thermal Expansion of Nonmetallic Solids”, Thermophys. Prop. Matter 13, Plenum, New York, 1977.Google Scholar
[16] Barin, I., Thermochemical Data of Pure Substances, 3rd. ed. (VCH Publishers, Inc., New York, 1995).Google Scholar