Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:33:49.394Z Has data issue: false hasContentIssue false

Properties of Buried SiO2 Films in Simox Structures

Published online by Cambridge University Press:  22 February 2011

A. G. Revesz
Affiliation:
Revesz Associates, 7910 Park Overlook Dr., Bethesda, MD 20817
G. A. Brown
Affiliation:
Texas Instruments, Inc., Dallas, TX 75265
H. L. Hughes
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Implantation of 1.8×1018O+/cm2 into silicon results in a buried oxide (BOX) layer, nominally 400 nm thick. The as-implanted BOX has ∼1020 cm−3 dangling bonds, ∼1020cm−3 reactive sites for interaction with H (D); the dielectric properties are ill-defined, and, similarly to densified or ion-bombarded silica glass, the SiO2 network contains an increased proportion of high energy Si-O bonds, i.e. it is “strained”. After annealing above 1300°C the properties approach those of thermally grown SiO2, the dangling Si bonds are eliminated, the D-uptake decreases, the Si/SiO2 interfaces become sharper, and the dispersed silicon agglomerates into clusters of various kind. However, the properties of BOX are still significantly different from those of thermally grown SiO2 films as shown by pronounced electron trapping, large concentration of different hole traps, decreased etch rate in HF, increased D-uptake and E' center generation rate, as well as by increased bulk conduction and the presence of localized conducting defects. These phenomena are likely to be related to some oxygen deficiency, e.g. O3SiO3 groups, as oxygen treatments reduce, but not completely eliminate, the difference between BOX and thermal oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruel, M., Margail, J., Jaussaud, C., Auberton-Herve, A. J. and Stoesmens, J., Microelctronic Eng. 8, 149 (1988).Google Scholar
2. Reason, K. J., Robinson, A. K., Hemment, P. L. F., Marsh, C. D., Christensen, K. N., Borker, G. R., Chater, R. J., Kilner, J. A., Harbke, G., Steimeir, E. F., and Celler, G. K., Microelectronic Eng. 8, 163 (1988).Google Scholar
3. Revesz, A. G. and Gibbs, G., Proc. Conf. Physics of MOS Insulators edited by Lucovsky, G. et al. (Plenum, New York, 1980) p. 92.Google Scholar
4. Revesz, A. G. and Walrafen, G., J. Non-Cryst. Solids 34, 323 (1983)Google Scholar
5. For a review, see Devine, R. A. B., J. Non-Cryst. Solids, in press.Google Scholar
6. Devine, R. A. B. and Arndl, J., Phys. Rev. B39, 5132 (1989).Google Scholar
7. Revesz, A. G., J. Non-Cryst. Solids 11, 309 (1973).Google Scholar
8. Lawrence, R. K. and Hughes, H. L., Proc. SOI Conf., Stateline, Nev., 1989, p. 89.Google Scholar
9. Stahlbush, R. E., Carlos, W. E., and Prokes, S. M., IEEE Trans. NS-37, 2008 (1987).Google Scholar
10. Vanheusden, K. and Stesmans, A., J. Appl. Phys. 69, 6656 (1991).Google Scholar
11. McMarr, P. J., Mrstik, B. J., Barger, M. S., Bowden, G., and Blanco, J. R., J. Appl. Phys. 67, 7211 (1990).Google Scholar
12. Roitman, P., Edelstein, M., Krause, S., and Visitserngtrukul, S., Proc. SOI Conf., Key West, FL, 1991, p. 154.Google Scholar
13. Devine, R. A. B. (private communication).Google Scholar
14. Myers, S. M., Mater. Res. Soc. Proc. 107, 105 (1988).Google Scholar
15. Revesz, A. G., Myers, S. M., Brown, G. A., and Hughes, H. L., Proc. SOI Conf., Ponte Vedra, FL, 1992, p. 40.Google Scholar
16. Shelby, J. E., J. Appl. Phys. 51, 2589 (1980).Google Scholar
17. Stesmans, A. (private communication).Google Scholar
18. Barklic, R. C., Hobbs, A., Hemment, P. L. F., and Reeson, K., J. Phys. C. 19, 6417 (1986).Google Scholar
19. Stesmans, A., Devine, R. A. B., Revesz, A. G., and Hughes, H. L., IEEE Trans. NS-37, 2008 (1991).Google Scholar
20. Heive, D., Leray, J. L., and Devine, R. A. B., J. Appl. Phys., in press.Google Scholar
21. Conley, J. F., Lenahan, P. M., and Roitman, P., IEEE Trans. NS-38, 1247 (1991).Google Scholar
22. Zvanut, M., Stahlbush, R., Carlos, W., Lawrence, R., Hevey, R., and Brown, G., EEEE Trans. NS-38, 1253 (1991).Google Scholar
23. Stesmans, A. and Vanheusden, K., Mater. Res. Soc. Conf., Boston, 1992 Google Scholar
24. Brown, G.A. and Revesz, A. G., Proc. SOI Conf. Beaver Creek, CO, 1991, p. 174.Google Scholar
25. Brown, G. A. and Revesz, A. G., presented at the Electrochem. Soc. Conference, St. Louis, 1992.Google Scholar
26. DiMaria, D. J., Dong, D. W., Falcony, C., Theis, T. N., Kirtley, J. R., Tsang, J. C., Young, D. R., and Pesavento, F. L., J. Appl. Phys. 54, 5801 (1983).Google Scholar
27. Boesch, H. E., Taylor, T. L., Hite, L. R., and Bailey, W. E., IEEE Trans. NS-37, 1982 (1990).Google Scholar
28. Stahlbush, R. E., Campisi, G. J., McKitterick, J. B., Maszara, W. P., Roitman, P., and Brown, G. A., presented at the IEEE Conf. Nucl. Rad. Effects, New Orleans, 1992.Google Scholar
29. Hosack, H. H., Joyner, K. A., El-Ghor, M. K., Hollingsworth, J., Brown, G. A., and Pollack, G. P., Proc. SOI Conf., Ponte Vedra, FL, 1992, p. 98.Google Scholar
30. Afanas'ev, V. V. (private communication).Google Scholar
31. Lawrence, R. K., Hughes, H. L., and Revesz, A. G., Proc. SOI Conf., Ponte Vedra, FL, 1992, p. 106.Google Scholar