Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:47:53.233Z Has data issue: false hasContentIssue false

The Properties of a Na-Doped Twist Boundary in SrTiO3 from First Principles

Published online by Cambridge University Press:  11 February 2011

Roope K. Astala
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
Paul D. Bristowe
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

The segregation of Nasr impurities to a Σ = 5 [001] twist boundary in SrTiO3 is studied using DFT-based plane-wave pseudopotential techniques. The formation energies of the impurities are calculated as a function of oxygen chemical potential and electron chemical potential. The results indicate a strong driving force for segregation to the boundary and that the Na impurities exhibit acceptor-like behaviour. The atomic displacements caused by the impurities are small both in the bulk and at the grain boundary. Based on the results a model is suggested in which Nasr segregation is driven by soft relaxation of the electronic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mauczok, R. and Wernicke, R., Philips Tech. Rev. 41, 338, (1983/1984).Google Scholar
2. Denk, I., Claus, J. and Maier, J., J. Electrochem. Soc. 144, 3526, (1997).Google Scholar
3. Kim, M., Duscher, G., Browning, N. D., Sohlberg, K., Pandelides, S. T. and Pennycook, S. J., Phys. Rev. Lett. 86, 4056, (2001).Google Scholar
4. Mo, S-D., Ching, W. Y., Chisholm, M. F. and Duscher, G., Phys. Rev. B 60, 2416, (1999).Google Scholar
5. Chang, H., Rodrigues, R. P., Xu, J-H., Ellis, D. E. and Dravid, V. P., Ferroelectrics 194, 249, (1997).Google Scholar
6. Chang, H., Lee, J. D., Rodrigues, R. P., Ellis, D. E. and Dravid, V. P., J. Mater. Synth. Proces. 6, 323, (1998).Google Scholar
7. Rodrigues, R. P., Chang, H., Ellis, D. E. and Dravid, V. P., J. Am. Ceram. Soc. 82, 2385 (1999).Google Scholar
8. Rodrigues, R. P., Ellis, D. E., and Dravid, V. P., J. Am. Ceramic Soc. 82, 2395, (1999).Google Scholar
9. Nomura, M., Ichinose, N., Yamaji, K., Haneda, H. and Tanaka, J., J. Electroceram. 4: S1, 91, (1999).Google Scholar
10. Mao, Z. and Knowles, K. M., Inst. Phys. Conf. Ser. No 153: Section 11, 523, (1997).Google Scholar
11. Kim, S-H., Byun, J-D., Park, W- and Kim, Y., J. Mat. Sci. 34, 30573061, (1999).Google Scholar
12. Astala, R. and Bristowe, P. D., Mat. Res. Soc. Proc. 718, (2002).Google Scholar
13. Astala, R. and Bristowe, P. D., J. Phys.: Condens. Matter 14, 13635, (2002).Google Scholar
14. Makov, G. and Payne, M. C., Phys. Rev. B 51, 4014, (1995).Google Scholar
15. Shah, R., Ph.D. Thesis, Chap. 4, University of Cambridge, (1996).Google Scholar
16. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannapoulos, J. D., Rev. Mod. Phys. 64, 1045, (1992).Google Scholar
17. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. and Fiolhais, C., Phys. Rev. B 46, 6671, (1992).Google Scholar
18. Cerius2 User Guide, (MSI/Accelrys, 1999).Google Scholar
19. Vanderbilt, D., Phys. Rev. B 41, 7892, (1990).Google Scholar
20. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188, (1974).Google Scholar