Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:49:06.662Z Has data issue: false hasContentIssue false

Propagation of Acoustic Phonons in Amorphous Superlattices

Published online by Cambridge University Press:  26 February 2011

P. V. Santos
Affiliation:
Max-Planck-Institut für Festkörperforschung, HeisenbergstraBe 1, D-7OOO Stuttgart 80, Federal Republic of Germany.
L. Ley
Affiliation:
Max-Planck-Institut für Festkörperforschung, HeisenbergstraBe 1, D-7OOO Stuttgart 80, Federal Republic of Germany.
J. Mebert
Affiliation:
Phys. Institut Teill, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80, Federal Republic of Germany.
J. Koblinger
Affiliation:
Phys. Institut Teill, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart 80, Federal Republic of Germany.
Get access

Abstract

We have investigated the Raman and the phonon transmission spectra of a-Si:H/a-SiNx:H super lattices. At low wavenumbers, the Raman spectrum shows sharp peaks corresponding to the excitation of modes from the folded branches of the dispersion relation for longitudinal acoustic phonons propagating perpendicular to the layers. Energy gaps in the folded phonon dispersion occur at the center and at the boundary of the mini-Brillouin zone due to the differences in the acoustic impedances of the layers. The size of the lowest gaps was determined by light scattering. The phonon transmission spectra show transmission minima that we attribute to the frequency gaps in the dispersion of transversal acoustic phonons. The position and width of these minima are compared with the dispersion obtained from the Raman data.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cardona, M., to appear in the Proc. of the Simposio Latino Americano de Fisica de Superficies, Caracas, 1986, to be published by Springer-Verlag.Google Scholar
2. Colvard, C., Merlin, R., Klein, M.V., and Gossard, A.C., Phys. Rev. Lett. 5, 298 (1980).CrossRefGoogle Scholar
3. Santos, P., Hundhausen, M., and Ley, L., Phys. Rev. B 33, 1516 (1986).Google Scholar
Santos, M. P., Hundhausen, M., and Ley, L., J. Non-Cryst. Solids B 33 1069 (1985).Google Scholar
5. Jusserand, B., Alexandre, F., Dubard, J., and Paquet, D., Phys. Rev. B 33, 2897 (1986).CrossRefGoogle Scholar
6. Naranayamurti, V., Störmer, H.L., Chen, M.A., Gossard, A.C., and Wiegmann, W., Phys. Rev. Lett. 43, 2012 (1979).CrossRefGoogle Scholar
7. Koblinger, O., Mebert, J., Dittrich, E., Döttlinger, S., and Eisen-menger, W., in Phonon Scattering in Condensed Matter V, ed. by Anderson, A. C. and Wolfe, J. P. (Springer-Verlag, Berlin, 1986), p. 156.Google Scholar
8. Colvard, C., Grant, T.A., Klein, M.V., Merlin, R., Fisher, R., Monroe, H., and Gossard, A.C., Phys. Rev. B 31, 2080 (1985).CrossRefGoogle Scholar
9. Rytov, S.M., Sov. Phys. Acoust. 2, 68 (1956).Google Scholar
10. Santos, P. V. and Ley, L., to be published.Google Scholar
11. Eisenmenger, W., in Physical Acoustics XII, ed. by Mason, W.A. and Thunston, R.N. (Academic Press, New York, 1976), p. 79.Google Scholar
12. Forkel, W., PhD thesis, University of Stuttgart, 1977.Google Scholar
13. Marx, D. and Eisenmenger, W., Z. Phys. B 8, 277 (1982) andGoogle Scholar
Rösch, F. and Weis, O., Rösch, F. and Weis, O. 25, 115 (1976).Google Scholar