Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:16:34.475Z Has data issue: false hasContentIssue false

Promoting effect of the alloy formation over Ni-Fe/Al2O3 catalysts for the steam reforming of biomass tar to synthesis gas

Published online by Cambridge University Press:  07 July 2011

Lei Wang
Affiliation:
School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Dalin Li
Affiliation:
School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan Japan Science and Technology Agency, CREST, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Mitsuru Koike
Affiliation:
School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Yoshinao Nakagawa
Affiliation:
School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan Japan Science and Technology Agency, CREST, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Keiichi Tomishige*
Affiliation:
School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan Japan Science and Technology Agency, CREST, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
Get access

Abstract

The addition of Fe addition with suitable amount to Ni /Al2O3 catalyst showed higher catalytic performance than corresponding monometallic Ni and Fe catalysts in the steam reforming of tar from the pyrolysis of cedar wood. Characterization of the catalysts indicates the formation of the Ni-Fe alloys and the surface segregation of Fe atoms on the alloys, and it was also suggested that the structure was almost maintained during the reaction. The surface Fe atoms accept oxygen atom from steam and subsequently supply oxygen species to adsorbed carbonaceous species on neighboring surface Ni atoms, which is connected to the promotion of the steam reforming reaction of tar and the suppression of the coke formation.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huber, G.W., Iborra, S., Corma, A., Chem. Rev. 106 (2006) 40444098.10.1021/cr068360dGoogle Scholar
2. Tomishige, K., Kimura, T., Miyazawa, T., Nishikawa, J., Kunimori, K., Catal. Commun. 8 (2007) 10741079.10.1016/j.catcom.2006.05.051Google Scholar
3. Kimura, T., Miyazawa, T., Nishikawa, J., Miyao, T., Naito, S., Okumura, K., Kunimori, K., Tomishige, K., Appl. Catal. B: Envrion. 68 (2006) 160170.10.1016/j.apcatb.2006.08.007Google Scholar
4. Nishikawa, J., Nakamura, K., Asadullah, M., Miyazawa, T., Kunimori, K., Tomishige, K., Catal. Today 131 (2008) 146155.10.1016/j.cattod.2007.10.066Google Scholar
5. Nakamura, K., Miyazawa, T., Sakurai, T., Miyao, T., Naito, S., Begum, N., Kunimori, K., Tomishige, K., Appl. Catal. B: Environ. 86 (2009) 3644.10.1016/j.apcatb.2008.07.016Google Scholar
6. Wang, L., Li, D., Koike, M., Koso, S., Nakagawa, Y. and Tomishige, K., Appl. Catal. A: Gen., 392 (2011) 248255.10.1016/j.apcata.2010.11.013Google Scholar
7. Gheisari, Kh., Javadpour, S., Oh, J.T., Ghaffari, M., J. Alloys Compd. 472 (2009) 416420.10.1016/j.jallcom.2008.04.074Google Scholar
8. Clarke, R. S. and Scott, E. R. D., American Mineralogist 65 (1980) 624630.Google Scholar
9. Kuhrt, C., and Schultz, L., J. Appl. Phys. 73 (1993) 19751980.10.1063/1.353162Google Scholar
10. Gorton, A.T., Bitsianes, G., Joseph, T.L., Trans. Met. Soc. AIME 233 (1965) 15191525.Google Scholar
11. Mizushima, T., Tohji, K., Harada, M., Ishikawa, M., Ueno, A., J. Catal. 112 (1988) 282289.10.1016/0021-9517(88)90140-6Google Scholar
12. Miyazawa, T., Okumura, K., Kunimori, K. and Tomishige, K., J. Phys. Chem. C. 112 (2008) 25742583.10.1021/jp076385qGoogle Scholar