Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:18:59.833Z Has data issue: false hasContentIssue false

Progress on Preferential Etching and Phosphorus Doping of Single Crystal Diamond

Published online by Cambridge University Press:  18 July 2014

Timothy A. Grotjohn
Affiliation:
Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA 48824 Fraunhofer Center for Coatings and Laser Applications, East Lansing MI, USA 48824
Dzung T. Tran
Affiliation:
Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA 48824
M. Kagan Yaran
Affiliation:
Fraunhofer Center for Coatings and Laser Applications, East Lansing MI, USA 48824
Thomas Schuelke
Affiliation:
Fraunhofer Center for Coatings and Laser Applications, East Lansing MI, USA 48824
Get access

Abstract

Phosphorus is incorporated into single crystal diamond during epitaxial growth at higher concentrations on the (111) crystallographic surface than on the (001) crystallographic surface. To form n+-type regions in diamond for semiconductor devices it is beneficial to deposit on the (111) surface. However, diamond deposition is faster and of higher quality on the (001) surface. A preferential etch method is described that forms inverted pyramids on the (001) surface of a substrate diamond crystal, which opens (111) faces for improved phosphorus incorporation. The preferential etching occurs on the surface in regions where a nickel film is deposited. The etching is performed in a microwave generated hydrogen plasma operating at 160 Torr with the substrate temperature in the range of 800-950 °C. The epitaxial growth of diamond with high phosphorus concentrations exceeding 1020 cm-3 is performed using a microwave plasma-assisted chemical vapor deposition process. Successful growth conditions were achieved with a feedgas mixture of 0.25% methane, 500 ppm phosphine and hydrogen at a pressure of 160 Torr and a substrate temperature of 950-1000°C. The room temperature resistivity of the phosphorus-doped diamond is 120-150 Ω-cm and the activation energy is 0.027 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koizumi, S., Kamo, M., Sato, Y., Ozaki, H., Inuzuka, T., Appl. Phys. Lett. 71, 10651067 (1997).CrossRefGoogle Scholar
Kato, H., Takeuchi, D., Tokuda, N., Umezawa, H., Okushi, H., Yamasaki, S., Diamond and Related Materials 18, 782785 (2009).CrossRefGoogle Scholar
Kato, H., Yamasaki, S., Okushi, H., Appl. Phys. Lett. 86, 222111–1-3, (2005).CrossRefGoogle Scholar
Kato, H., Wananabe, H., Yamasaki, S., Okushi, H., Diamond Relat. Mater. 15, 548553 (2006).CrossRefGoogle Scholar
Kato, H., Makino, T., Yamasaki, S., Okushi, H., J. Phys. D. Appl. Phys. 40, 61896200 (2007).CrossRefGoogle Scholar
Nakai, T., Maida, O., Ito, T., Appl. Surf. Sci. 254, 62816284 (2008).CrossRefGoogle Scholar
Frangieh, G., Pinault, M.A., Barjon, J., Tillocher, T., Jomard, F., Chevallier, J., Phys. Status, Solili A 206, 20002003 (2009).CrossRefGoogle Scholar
Kato, H., Makino, T., Ogura, M., Tokuda, N., Okushi, H., Yamasaki, S., Applied Physics Express 2, 055502 (2009).CrossRefGoogle Scholar
Kato, H., Makino, T., Ogura, M., Takeuchi, D., Yamasaki, S., Japanese J. Appl. Phys. 51, 090118, (2012).CrossRefGoogle Scholar
Kato, H., Makino, T., Ogura, M., Tokuda, N., Oyama, K., Takeuchi, D., Okushi, H., Yamasaki, S., Phys. Status Solidi A 207, 20992104 (2010).CrossRefGoogle Scholar
Hoshino, Y., Kato, H., Makino, T., Ogura, M., Iwasaki, T., Hatano, M., Yamasaki, S., Phys. Status Solidi A 209, 17611764 (2012).CrossRefGoogle Scholar
Iwasaki, T., Hoshino, Y., Tsuzuki, K., Kato, H., Makino, T., Ogura, M., Takeuchi, D., Matsumoto, T., Okushi, H., Yamasaki, S., Hatano, M., Appl. Phys. Express 5, 091301 (2012).CrossRefGoogle Scholar
Kato, H., Makino, T., Ogura, M., Takeuchi, D., Yamasaki, S., Diamond Related Mater. 34, 4144 (2013).CrossRefGoogle Scholar
Smirnov, W., Hees, J. J., Brink, D., Muller-Sebert, W., Kriele, A., Williams, O. A., Nebel, C. E., Appl. Phys. Lett. 97, 073117 (2010).CrossRefGoogle Scholar
Hemawan, K.W., Grotjohn, T.A., Reinhard, D.K., Asmussen, J., Diamond and Related Materials 19, 14461452 (2010).CrossRefGoogle Scholar
Berger, H. H., Solid State Electronics 15, 145 (1972).CrossRefGoogle Scholar