Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T16:41:01.969Z Has data issue: false hasContentIssue false

Progress on GaInAsSb And InAsSbP Photodetectors for MiD-Infrared Wavelengths

Published online by Cambridge University Press:  10 February 2011

Z. A. Shellenbarger
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
M. G. Mauk
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
P. E. Sims
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
J. A. Cox
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
J. D. Lesko
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
J. R. Bower
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
J. D. South
Affiliation:
Materials Science Department, University of Delaware, Newark, DE 19717
L. C. Dinetta
Affiliation:
AstroPower Inc., Solar Park, Newark, DE 19716-2000
Get access

Abstract

Progress on mid-infrared photodetectors fabricated by the liquid phase epitaxial growth of GaInAsSb, InAsSbP, and AlGaAsSb on GaSb and InAs substrates is reported. GaInAsSb p/n and p-i-n detectors, InAsSbP p/n detectors and AlGaAsSb/GaInAsSb avalanche photodiode (APD) structures were fabricated. Preliminary results indicate that these devices can have higher detectivity with lower cooling requirements than commercially available detectors in the same wavelength range. Infrared p/n junction detectors made from GaInAsSb and InAsSbP showed cut-off wavelengths of 2.3.μm and 2.8. μm respectively. Room temperature background noiselimited detectivity (D*BLIP) of 4 × 1010 cmHz1/2/W for GaInAsSb detectors and 4 × 108 cmHz1/2/W for InAsSbP was measured. Room-temperature avalanche multiplication gain of 20 was measured on AlGaAsSb/GaInAsSb avalanche photodiodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andreev, I.A. et al., Sov. Tech. Phys. Lett., 15, 253 (1989).Google Scholar
2. Mébarki, M. et al., Solid-State Electronics, 39, 39 (1996).Google Scholar
3. Li, A.Z. et al., Journal of Crystal Growth, 150, 1375 (1995).Google Scholar
4. Yakovlev, Y.P. et al., Proceedings of SPIE, 1510, 170 (1991).Google Scholar
5. Garnham, R.A. et al., Electronics Letters, 24, 1416 (1988).10.1049/el:19880967Google Scholar
6. Toumie, E., et al., J. Appl. Phys., 68, 5936 (1990).Google Scholar
7. Astles, M., et al., J. Electronic Materials, 15, 41 (1986).Google Scholar
8. Rowe, D. R. and Krier, A., J. Phys. D: Applied Phys, 26, 1103 (1993).Google Scholar
9. Baranov, A.N. et al., Journal of Crystal Growth, 66, 547 (1984).Google Scholar
10. Gong, X.Y. et al., Jpn. J. Appl. Phys., 36, 2614 (1997).Google Scholar
11. Taguchi, K., Matsumoto, Y., and Nishida, K., Electronics Letters, 15, 453 (1979).Google Scholar
12. Sze, S.M., Physics of Semiconductor Devices, (NY: John Wiley & Sons 1981) p.766774.Google Scholar