Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T10:43:28.375Z Has data issue: false hasContentIssue false

Progress and Challenges for Chemical Mechanical Polishing of Gallium Nitride

Published online by Cambridge University Press:  17 July 2013

Hideo Aida
Affiliation:
Namiki Precision Jewel Co. Ltd., NJC Institute of Technology, Tokyo 123-8511, Japan Kyushu University, KASTEC, Fukuoka 816-8580, Japan
Toshiro Doi
Affiliation:
Kyushu University, KASTEC, Fukuoka 816-8580, Japan
Tsutomu Yamazaki
Affiliation:
Kyushu University, KASTEC, Fukuoka 816-8580, Japan
Hidetoshi Takeda
Affiliation:
Namiki Precision Jewel Co. Ltd., NJC Institute of Technology, Tokyo 123-8511, Japan
Koji Koyama
Affiliation:
Namiki Precision Jewel Co. Ltd., NJC Institute of Technology, Tokyo 123-8511, Japan
Get access

Abstract

Progress and challenges for chemical mechanical polishing (CMP) of GaN are discussed in detail by focusing on the importance of GaN surface oxidation during CMP. We report on the significant difference in the removal rates between Ga2O3 and GaN, suggesting that the surface oxidation reaction is the rate-limiting step for CMP of Ga-faced GaN. This is actually proved by the fact that ex-situ surface oxidation by annealing in air prior to CMP exhibits a marked reduction in the required CMP time to produce a damage-free surface. As a future challenge, we outline two of our recent developments, ultraviolet-assisted CMP and atmosphere-controlled CMP, that enable in-situ oxidation, since ex-situ oxidation must be modified to in-situ to further advance CMP.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
Khan, M. A., Kuznia, J. N., Olson, D. T., Schaff, W. J., Burm, J. W. and Shur, M. S., Appl. Phys. Lett. 65, 1121 (1994).CrossRefGoogle Scholar
Nakamura, S., Senoh, M., Iwasa, N. and Nagashima, S., Jpn. J. Appl. Phys. 34, L797 (1995).CrossRefGoogle Scholar
Pearton, S. J., Zolper, J. C., Shul, R. J. and Ren, F., J. Appl. Phys. 86, 1 (1999).CrossRefGoogle Scholar
Fujikane, M., Inoue, A., Yokogawa, T., Nagao, S. and Nowak, R., Phys. Status Solidi C 7, 1798 (2010).CrossRefGoogle Scholar
Aida, H., Takeda, H., Koyama, K., Katakura, H., Sunakawa, K. and Doi, T., J. Electrochem. Soc. 158, H1206 (2011).CrossRefGoogle Scholar
Aida, H., Doi, T., Takeda, H., Katakura, H., Kim, S.-W., Koyama, K., Yamazaki, T. and Uneda, M., Curr. Appl. Phys. 12, S41 (2012).CrossRefGoogle Scholar
Preston, F. W., J. Soc. of Glass Tech. 11, 214 (1927).Google Scholar
Sadakuni, S., Murata, J., Yagi, K., Sano, Y., Arima, K., Hattori, A., Okamoto, T. and Yamauchi, K., Mater. Sci. Forum 645, 795 (2010).CrossRefGoogle Scholar
Aida, H., Nishiguchi, K., Takeda, H., Aota, N., Sunagawa, K. and Yaguchi, Y., Jpn. J. Appl. Phys. 47, 8506 (2008).CrossRefGoogle Scholar
Readinger, E. D., Wolter, S. D., Waltemyer, D. L., Delucca, J. M., Mohney, S. E., Prenitzer, B. I., Giannuzzi, L. A. and Molnar, R. J., J. Electron. Mater. 28, 257 (1999).CrossRefGoogle Scholar
Xu, X. F., Zhang, R., Chen, P., Zhu, Y. G., Chen, Z. Z., Xie, S. Y., Li, W. P. and Zheng, Y. D., Proc. Int. Conf. Solid-State and Integrated-Circuit Technology 2, 1205 (2001).CrossRefGoogle Scholar
Hanser, D., Tutor, M., Preble, E., Williams, M., Xu, X., Tsvetkov, D. and Liu, L., J. Cryst. Growth 305, 372 (2007).CrossRefGoogle Scholar
Aida, H., Takeda, H., Aota, N., Kim, S.-W. and Koyama, K., Sens. Mater. 25, 189 (2013).Google Scholar
Ohira, S. and Arai, N., Phys. Status Solidi C 5, 3116 (2008).CrossRefGoogle Scholar
Vanleugenhaghe, C., de Zoubov, N. and Pourbaix, M. in Atlas of Electrochemical Equilibria in Aqueous Solutions, edited by Pourbaix, M., (National Association of Corrosion Engineers, Houston, 1974) p. 428.Google Scholar
Tavernier, P. R., Margalith, T., Coldren, L. A., DenBaars, S. P. and Clarke, D. R., Electrochem. Solid-State Lett. 5, G61 (2002).CrossRefGoogle Scholar
Bardwell, J. A., Webb, J. B., Tang, H., Fraser, J. and Moisa, S., J. Appl. Phys. 89, 4142 (2001).CrossRefGoogle Scholar
Zhuang, D. and Edgar, J. H., Mater. Sci. Eng. R 48, 1 (2005).CrossRefGoogle Scholar
Doi, T., Philipossian, A. and Ichikawa, K., Electrochem. Solid-State Lett. 7, G158 (2004).CrossRefGoogle Scholar
Doi, T. K., Watanabe, S., Doy, H., Sakurai, S. and Ichikawa, D., Int. J. Manufacturing Sci.. & Technol. 9, 5 (2007).Google Scholar
Doi, T. K., Yamazaki, T., Kurokawa, S., Umezaki, Y., Ohnishi, O., Akagami, Y., Yamaguchi, Y. and Kishii, S., Adv. Sci. Technol. 64, 65 (2011).CrossRefGoogle Scholar
Kitamura, K., Doi, T. K., Kurokawa, S., Umezaki, Y., Matsukawa, Y., Ooki, Y., Hasegawa, T., Koshiyama, I., Ichikawa, K. and Nakamura, Y., Key Engineering Mater. 447-448, 61 (2010).CrossRefGoogle Scholar