Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:54:34.553Z Has data issue: false hasContentIssue false

Profiling of the SiO2 - SiC Interface Using X-ray Photoelectron Spectroscopy

Published online by Cambridge University Press:  21 March 2011

R. N. Ghosh
Affiliation:
Center for Sensor Materials, Michigan State Univ., E. Lansing, MI 48864
S. Ezhilvalavan
Affiliation:
Center for Sensor Materials, Michigan State Univ., E. Lansing, MI 48864
B. Golding
Affiliation:
Center for Sensor Materials, Michigan State Univ., E. Lansing, MI 48864
S. M. Mukhopadhyay
Affiliation:
Dept. of Mechanical & Materials Engineering, Wright State Univ., Dayton, OH 45435
N. Mahadev
Affiliation:
Dept. of Mechanical & Materials Engineering, Wright State Univ., Dayton, OH 45435
P. Joshi
Affiliation:
Dept. of Mechanical & Materials Engineering, Wright State Univ., Dayton, OH 45435
M. K. Das
Affiliation:
Cree Inc., 4600 Silicon Dr., Durham, NC 27703
J. A. Cooper Jr
Affiliation:
School of Electrical & Computer Engineering, Purdue Univ., W. Lafayette, IN 47907
Get access

Abstract

The implementation of SiC based sensors and electronics for operation in chemically harsh, high temperature environments depends on understanding the SiO2/SiC interface in field effect devices. We have developed a technique to fabricate wedge polished samples (angle ∼ 1×10−4 rad) that provides access to the SiO2/SiC interface via a surface sensitive probe such as xray photoelectron spectroscopy (XPS). Lateral scanning along the wedge is equivalent to depth profiling. Spatially resolved XPS images of the O 1s and Si 2p core levels were obtained of the interfacial region. Samples consist of device-quality thermally grown oxides on 4H-SiC single crystal substrates. The C 1s spectrum suggests the presence of a graphitic layer on the nominally bare SiC surface following thermal oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Di Ventura, M. and Pantelides, S. T., “Atomistic Mechanisms of Oxygen Precipitation and Thin – Film Oxidation of SiC”, Phys. Rev. Lett. 83, 1624 (1999).Google Scholar
2. Afanasev, V. V., Bassler, M., Pensl, G. and Schulz, M., “Intrinsic SiC/SiO2 interface states”, Phys. Stat. Sol. A – Appl. Res. 162, 321 (1997).Google Scholar
3. Duscher, G.Atomic Scale Imaging and Spectroscopy of the SiO2 – SiC Interface”, Bull. Am. Phys. Soc., 45, 340 (2000).Google Scholar
4. Chang, K. C., Nuhfer, N. T., Porter, L. M. and Wahab, Q., “High-carbon concentrations at the silicon dioxide – silicon carbide interface identified by electron energy loss spectroscopy”, Appl. Phys. Lett. 77, 2186 (2000).Google Scholar
5. Jernigan, G. G., Stahlbush, R. E. and Saks, N. S., “Effect of oxidation and reoxidation on the oxide – substrate interface of 4H- and 6H-SiC”, Appl. Phys. Lett. 77, 1437 (2000).Google Scholar
6. Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A. and Yarmoff, J. A.Microscopic structure of the SiO2/Si interface”, Phys. Rev. B, 38, 6084 (1988).Google Scholar
7. Das, M. K., Cooper, Jr., J. A. and Melloch, M.R.Effect of Epilayer Characteristics and Processing Conditions on the Thermally Oxidized SiO2/SiC Interface,J. Elec. Mat. 27, (1998).Google Scholar
8. Muehlhoff, L., Choyke, W. J., Bozack, M. J. and Yates, J. T., “Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001)”, J. Appl. Phys. 60, 2842 (1986).Google Scholar