Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T01:09:12.009Z Has data issue: false hasContentIssue false

Profiling of Anode Surface Cycled in LiBOB-based Electrolyte of Li Ion Batteries

Published online by Cambridge University Press:  01 February 2011

Unchul Lee
Affiliation:
Jow Sensor and Electronic Devices Directorate, U. S. Army Research Laboratory, Adelphi, MD 20783–1197
Kang Xu
Affiliation:
Jow Sensor and Electronic Devices Directorate, U. S. Army Research Laboratory, Adelphi, MD 20783–1197
Sheng S. Zhang
Affiliation:
Jow Sensor and Electronic Devices Directorate, U. S. Army Research Laboratory, Adelphi, MD 20783–1197
T. Richard
Affiliation:
Jow Sensor and Electronic Devices Directorate, U. S. Army Research Laboratory, Adelphi, MD 20783–1197
Get access

Abstract

As the youngest battery chemistry, Li ion technology was made possible by the formation of stable electrode/electrolyte interfaces. The correlation between the electrochemistry and the surface profile of the graphitic anode was studied in this work with a new salt lithium bis (oxalate) borate (LiBOB).

In an attempt to depict a dynamic picture of the formation of graphite/electrolyte interface during the initial forming cycle, we employed X-ray photoelectron spectroscopy in combination with the “pre-formation” technique to establish the dependence of the surface chemistry on the forming potential of the anode. A progressive transition in the 1s electron binding energies of the major elements was observed as the lithiation proceeds; however, the surface chemical species as well as their abundances seemed to stabilize around 0.55 V and remained constant during the subsequent delithiation process, indicating that a stable solid electrolyte interface (SEI) exists thereafter. Integrating the information revealed by different analyses, we believe that the reductive decomposition of BOB-anion starts at ca. 1.00 V, while the effective protection of graphene surface by SEI is available after the anode is lithiated below the potential of 0.55 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Lischka, U., Wietelmann, U., and Wegner, M., Ger. DE 19829030 C1 (1999)Google Scholar
(2) Xu, W., and Angell, C. A., Electrochemical and Solid State Letters, 4, E1 (2001)Google Scholar
(3) Xu, K., Zhang, S., Jow, T. R., Xu, W., and Angell, C. A., Electrochemical and Solid State Letters, 5, A26 (2002)Google Scholar
(4) Xu, K., Zhang, S., Poese, B. A., and Jow, T. R., Electrochem. Solid-State Lett., 5, A259 (2002)Google Scholar
(5) Xu, K., Zhang, S., and Jow, T. R., Electrochem. Solid-State Lett., 6, A117 (2003)Google Scholar
(6) Xu, K., Lee, U., Zhang, S., Wood, M., and Jow, T. R., Electrochem. Solid-State Lett., 6, A144 (2003)Google Scholar
(7) (a) Liu, J., Xu, K., and Jow, T. R., Amine, K., Abstract No. 135, 202nd Meeting of Electrochemical Society, Salt Lake City, Utah, Oct. 20–24, 2002;Google Scholar
(b) Fujii, T., Takehara, M., and Ue, M., Abstract No. 203, 202nd Meeting of Electrochemical Society, Salt Lake City, Utah, Oct. 20–24, 2002 Google Scholar
(8) (a) Jiang, J. and Dahn, J. R., Electrochem. Solid-State Lett., 6, A180 (2003);Google Scholar
(b) Chen, Z. and Dahn, J. R., Abstract No. 329, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(c) Jiang, J. and Dahn, J. R., Abstract No. 418, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(d) Chen, Z., and Dahn, J. R., Electrochem. Solid-State Lett., 7, A11 (2004)Google Scholar
(e) Jiang, J., and Dahn, J. R., Electrochem. Commun, 6, 39 (2004)Google Scholar
(9) (a) Amine, K., Hawaii Battery Conference, Big Island of Hawaii, January 7–10, 2003;Google Scholar
(b) Liu, J., Kahaian, A. J., and Amine, K., Abstract No. 257, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(c) Amine, K., Belharouak, I., Liu, J., Kahaian, A., Vissers, D., and Henriksen, G., Abstract No. 419, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(d) Hyung, Y., Vissers, D., Henriksen, G., and Amine, K., Abstract No. 243, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003 Google Scholar
(10) (a) Gering, K., and Duong, T., Abstract No. 272, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(b) Ding, M., Xu, K., and Jow, R., Abstract No. 274, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(c) Ding, M., Xu, K., and Jow, R., Abstract No. 274, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003 Google Scholar
(11) (a) Xu, W. and Angell, C. A., Electrochim. Acta, 48, 2029 (2003);Google Scholar
(b) Xu, W., Wang, L. and Angell, C. A., Electrochim. Acta, 48, 2037 (2003);Google Scholar
(c) Nolan, B. G., and Strauss, S. H., J. Electrochem. Soc., 150, A1726 (2003);Google Scholar
(d) Xu, W., Shusterman, A. J., Marzke, R., and Angell, C. A., Abstract No. 295, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(e) Sun, X., Reeder, C., Liu, G., Kerr, J., Han, Y., and Xie, J., Abstract No. 283, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003 Google Scholar
(12) (a) Jow, T. R., Ding, M., Xu, K., Zhang, S., Allen, J., and Amine, K., Abstract No. 258, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(b) Xu, K., Zhang, S., and Jow, T. R., Abstract No. 296, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003;Google Scholar
(c) Xu, K., Lee, U., Zhang, S., and Jow, T. R., Abstract No. 297, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003 Google Scholar
(13) Zhuang, G. V., Xu, K., Jow, T. R., and Ross, P. N. Jr, Electrochem. Solid-State Lett, in pressGoogle Scholar
(14) MacNeil, D. D., and Dahn, J. R., J. Electrochem. Soc., 150, A21 (2003)Google Scholar
(15) Maleki, H., Deng, G., Anani, A., and Howard, J., J. Electrochem. Soc., 146, 3224 (1999)Google Scholar
(16) (a) Aurbach, D., and Gofer, Y. J. Electrochem. Soc., 138, 3529 (1991);Google Scholar
(b) Zhang, X., Kostecki, R., Richardson, T. J., Pugh, J. K., and Ross, P. N. J. Electrochem. Soc., 148, A1341 (2001);Google Scholar
(c) Wang, Y., Nakamura, S., Ue, M., and Balbuena, P. B., J. Am. Chem. Soc., 123, 11708 (2001)Google Scholar
(17) Bar-Tow, D., Peled, E., and Burstein, L. J. Electrochem. Soc., 146, 824 (1999)Google Scholar
(18) Xu, K., Zhang, S., and Jow, T. R., to be publishedGoogle Scholar
(19) Edström, K., Abstract No. 405, 204th Meeting of Electrochemical Society, Orlando, Florida, Oct. 12–16, 2003 Google Scholar
(20) Kinoshita, K., “Carbon: Electrochemical and Physicochemical Properties”, J. Wiley & Sons, 1988, New York Google Scholar
(21) Xu, K., Zhang, S., and Jow, T. R., unpublished resultsGoogle Scholar
(22) Andersson, A. M., and Edström, K., J. Electrochem. Soc., 148, A1100 (2001)Google Scholar
(23) Lee, C., Mun, B., and Ross, P. N., J. Electrochem. Soc., 149, A1286 (2002)Google Scholar
(24) Zhang, S., Ding, M., Xu, K., Allen, J. L., Jow, T. R., Electrochem. Solid-State Lett., 4, A206 (2001)Google Scholar