Article contents
Production of Electronically Excited P2 and in from ArF Excimer Laser Irradiation of InP
Published online by Cambridge University Press: 28 February 2011
Abstract
We have investigated the decomposition of single-crystal InP surfaces irradiated by a 193 nm ArF excimer laser. These studies provide insight into mechanisms of thermal decomposition, surface diffusion and epitaxy. Pulsed laser exposure leads to evolution of P2 from the surface which is detected by resonance fluorescence resulting from a fortuitous overlap of the v″ = 0 with the laser frequency. P2-evolution occurs above a threshold fluence of 0.12 J/cm2 and lags the peak laser intensity by ∼20 nsec. These observations are explained by a thermally activated decomposition mechanism, as opposed to any direct, photochemical ejection process. Peak surface temperatures have been calculated and are used to predict P2 yields as a function of fluence and time which are in good agreement with experiments. These findings are also discussed in relation to previous studies of excimer laser stimulated growth of InP.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1987
References
- 4
- Cited by