Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:34:06.713Z Has data issue: false hasContentIssue false

Production of Defects in Metals by Collision Cascades: Tem Experiments

Published online by Cambridge University Press:  16 February 2011

M. A. Kirk*
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

I will review our experimental TEM data on the production of dislocation loops by low energy ion bombardment to low doses, as simulations of similar collision cascades produced by fast neutron irradiation, in various metals and alloys. The dependence of vacancy dislocation loop formation on recoil energy, sample temperature, and specific metal or alloy will be examined. Special emphasis will be placed on the effects of dilute alloy additions. A model for cascade melting will be employed to understand these effects, and will require an examination of the role of electron-phonon coupling in cascade cooling and recrystallization. The formation of interstitial dislocation loops as cascade defects, and the influence of the nearby surfaces in these experiments will be briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jenkins, M. L., Kirk, M. A. and Phythian, W. J., J. Nucl. Mater. 205, 16 (1993).Google Scholar
2. Ghaly, M. and Averback, R. S., Phys. Rev. Lett. 72, 364 (1994).Google Scholar
3. Rubia, T. Diaz de la and Phythian, W. J., J. Nucl. Mater. 191–194, 108 (1992).Google Scholar
4. Robertson, I. M., Vetrano, J. S., Kirk, M. A. and Jenkins, M. L., Phil. Mag. A 63, 299 (1991).Google Scholar
5. Kirk, M. A. and Weber, H. W., in Studies of High Temperature Superconductors Volume 10, edited by Narlikar, A. (Nova Science Publishers, Commack, NY, 1993) p. 254.Google Scholar
6. Kirk, M. A. and Greenwood, L. R., J. Nucl. Mater. 80, 159 (1979).Google Scholar
7. Bui, T. X., Sirois, E., Robertson, I. M. and Kirk, M. A., in Effects of Radiation on Materials, Eds: Kumar, A. S., Stoller, R.E. and Gelles, D.S., (ASTM, 1991)STP- 1125,463.Google Scholar
8. Kirk, M. A., Robertson, I. M., Jenkins, M. L., English, C. A., Black, T. J. and Vetrano, J. S., J. Nucl. Mater. 149, 21 (1987).Google Scholar
9. Robertson, I. M., Kirk, M. A. and King, W. E., Scripta Met. 18, 317 (1984).Google Scholar
10. Vetrano, J. S., Robertson, I. M. and Kirk, M. A., Scripta Met. 24, 157 (1990).Google Scholar
11. Shimomura, Y., Guinan, M. W., Fukushima, H., Hahn, P. A. and Kiritani, M., J. Nucl. Mater. 155–157, 1181 (1988).Google Scholar
12. Muncie, J. M., Eyre, B. L. and English, C. A., Phil. Mag. A, 52, 309 (1985).Google Scholar
13. Shepherd, B. W. O., Jenkins, M. L. and English, C. A., Phil. Mag. A, 56, 458 (1987).Google Scholar
14. Kirk, M. A., Jenkins, M. L. and Fukushima, H., to be published, (1995).Google Scholar
15. English, C. A., Forman, A. J. E., Phythian, W. J., Bacon, D. J. and Jenkins, M. L., Mat. Sci. Forum, 97–99, 1 (1992).Google Scholar
16. Mueller, S., Jenkins, M. L. and Abromite, C., to be published, (1995).Google Scholar
17. Black, T. J., Jenkins, M. L., English, C. A. and Kirk, M. A., Proc. R. Soc. Lond. A 409, 177 (1987).Google Scholar
18. Winterbon, K. B., Sigmund, P. and Sanders, J. B., Vidensk, K. danske. Selsk. Skr, 37 (40), (1970).Google Scholar
19. Vetrano, J. S., Robertson, I. M. and Kirk, M. A., Phil. Mag. A, 68, 381 (1993).Google Scholar
20. Robertson, I. M., Tappin, D. K. and Kirk, M. A., Phil. Mag. A, 68, 843 (1993).Google Scholar
21. Tappin, D. K., Robertson, I. M. and Kirk, M. A., Phil. Mag A, 70, 463 (1994).Google Scholar
22. Flynn, C. P. and Averback, R. S., Phys. Rev. B 38, 7118 (1988).Google Scholar
23. Stathopoulos, A. Y., English, C. A., Eyre, B. L. and Hirsch, P. B., Phil. Mag. A 44, 309 (1981).Google Scholar