Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:37:46.746Z Has data issue: false hasContentIssue false

Processing Of PbTi03 And Pb(ZrxTi1−x)03 Thin Films By Novel Single-Solid-Source Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

Ping Lu
Affiliation:
Department of Materials Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801
Hang Li
Affiliation:
Department of Materials Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801
Shan Sun
Affiliation:
Department of Materials Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801
Brace Tuttle
Affiliation:
Sandia National Laboratory, Albuquerque, NM 87109
Get access

Abstract

Ferroelectric PbTiO3(FT) and Pb(ZrxTi1−x)03 (PZT) thin films have been deposited on (100) MgO and (111) Pt/SiO2/(100)Si substrates by using a novel single-solid-source metalorganic chemical vapor deposition (MOCVD) technique. The new technique uses a powder delivery system to deliver the mixed precursor powders directly into a hot vaporizer from room temperature, therefore, avoiding any problems associated with polymerization or decomposition of the precursors before evaporation. The technique simplifies MOCVD processing significantly and can improve process reliability and reproducibility. The deposited FT and PZT films have a perovskite structure and are highly oriented with respect to the substrate. With improvement of process control, systematic studies of film evolution under various growth conditions have been carried out. Effects of substrate, substrate temperature, system vacuum, and precursor ratios in the mixture on film microstructure and properties will be presented in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See for instance, Epitaxial oxide thin films II (Mrs. Res. Soc. Symp. Proc. 401), Edited by Speck, J.S., Fork, D.K., Wolf, R. M. and Shiosaki, T., (1996)Google Scholar
[2] Scott, J. F. and Paz De Arauj, C. A., Science 246, 1400 (1989).Google Scholar
[3] Sinharoy, S., Buhay, H., Lampe, D.R. and Francombe, M.H., J. Vac. Sci. Technol. AIO, 1554(1992).Google Scholar
[4] Haertling, G. H., J. Vac. Sci. Technol. A9, 414 (1991).Google Scholar
[5] Okada, M., Tominaga, K., Araki, T., Katayama, S. and Sakashita, Y., Jpn. J. Appl. Phys. 29, 718(1990).Google Scholar
[6] Sakashita, Y., One, T., Segawa, H., Tominaga, K., Okada, M., J. Appl. Phys. 69, 8352 (1991).Google Scholar
[7] Kwak, B.S., Boyd, E.P. and Erbil, A., Appl. Phys. Lett. 53, 1702 (1988).Google Scholar
[8] Bai, G.R., Chang, H.L. M., Kim, H.K., Foster, C.M., and Lam, D.J., Appl. Phys. Lett. 61, 408(1992).Google Scholar
[9] Peng, C. and Desu, S. B., Appl. Phys. Lett. 61, 16 (1992).Google Scholar
[10] Shimizu, M. and Shiosaki, T., Mat. Res. Soc. Symp. Proc. 361, 295 (1995).Google Scholar
[11] Foster, C.M., Csencsits, R., Baldo, P. M., Bai, G. R., Li, Z., Rehn, L.E., Wills, L. A., Hiskes, R., Dimos, D. and Sinclair, M.B., Mat. Res. Soc. Symp. Proc. 361, 307 (1995).Google Scholar
[12] Zhao, J., Chern, C.S., Li, Y.Q., Noh, D.W., Norris, P., Zawadzki, P., Kear, B. and Gallois, B., J. Crystal Growth 107, 699 (1991).Google Scholar
[13] Hiskes, R., DiCarolis, S.A., Jacowitz, R.D., Lu, Z., Feigelson, R.S., Route, R.K. and Young, J.L., J. Crystal Growth 108, 781 (1993).Google Scholar
[14] Hiskes, R., DiCarolis, S.A., Young, J.L., Laderman, S.S., Jacowitz, R.D., and Taber, R.C., Appl. Phys. Lett. 59, 606 (1991).Google Scholar
[15] Zhang, J., Gardiner, R.A., Kirlin, P.S., Boerstler, R. W. and Steinbeck, J., Appl. Phys. Lett. 61, 2884(1992).Google Scholar
[16] Kirlin, P.S, Binder, R.L. and Gardiner, R.A., US Patent Application 07/807, 807.Google Scholar
[17] Lu, P., Li, H., Sun, S. and Tuttle, B., J. Crystal Growth 171, 453 (1997).Google Scholar
[18] Lu, P., Li, H., Sun, S., Wang, Y. M. and Tuttle, B., J. Crystal Growth, Submitted.Google Scholar
[19] Bai, G.R., Chang, H.L.M., Lam, D.J. and Gao, Y., Appl. Phys. Lett. 62, 1754 (1993).Google Scholar
[20] Shimizu, M., Sugiyama, M., Fujisawa, H. and Shiosaki, T., Jpn. J. Appl. Phys. 33, 5167 (1994).Google Scholar
[21] Shimizu, M., Fujimoto, M., Katayama, T., Shiosaki, T.., Nakaya, K., Fukagawa, M. and Tanikawa, E., Mater. Res. Soc. Symp. Proc. 310, 255 (1993).Google Scholar
[22] Tomonari, H., Ishiu, T., Sakata, K. and Takenaka, T., Jpn. J. Appl. Phys. 31, 2998 (1992).Google Scholar
[23] Kanno, I., Hayashi, S., Kamada, T., Kitagawa, M. and Hirao, T., Jpn. J. Appl. Phys. 32, 4057(1993).Google Scholar