Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:35:18.713Z Has data issue: false hasContentIssue false

Processing of Low Alpha-Particle Emitting Ceramics

Published online by Cambridge University Press:  22 February 2011

P. A. Morris
Affiliation:
Dept.of Materials Science and Engineering, MIT, Cambridge,MA
C. A. Handwerker
Affiliation:
Dept.of Materials Science and Engineering, MIT, Cambridge,MA
R. L. Coble
Affiliation:
Dept.of Materials Science and Engineering, MIT, Cambridge,MA
D. R. Gabbe
Affiliation:
Dept.of Materials Science and Engineering, MIT, Cambridge,MA
R. T. Howard
Affiliation:
IBM, Essex Junction, VT
Get access

Abstract

The raw materials and clean-room processing techniques required to produce a low alpha-particle emitting insulating material have been investigated with the goal of producing a dense fired alumina ceramic with a reproducible, low alpha-particle flux (≤ 0.01 α/cm2hr). Various sources of A12 O3, MgO, and SiO2, the primary constituents of the alumina body, were tested for the alpha-particle emitting elements, U and Th, and for total alpha-particle flux. Many materials contain U concentrations with corresponding alpha-particle fluxes of 0.01α/cm2hr. Die pressing, filter casting and isopressing have been used under class 100 clean-room conditions to process powder compacts and the benefits and problems of each were evaluated. Analysis of the material before, at various stages during processing, and after firing has shown that dense fired Al2O3 ceramics can be produced with no detectable increase above that of the source powder in the U and Th contents, or the alpha-particle flux.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. May, T., Woods, M., IEEE Trans. Electron Devices, ED-26,1, 33 (1979).Google Scholar
2. Meieran, E., Engel, P., May, T., IEEE Proceedings, Int. Reliability Physics Symposium, 13 (1979).Google Scholar
3. Bouldin, D., Kumar, A., IEEE Proceedings, Int. Reliability Physics Symposium, 265 (1979).Google Scholar
4. Ziegler, J., Lanford, W., Science, 206, 776, (1979).Google Scholar
5. May, T., IEEE Proceedings, Int. Reliability Physics Symposium, 247 (1979).Google Scholar
6. Wooley, J., Lamar, L., Stradley, N., Harshburger, D., IEEE Proceedings, Int. Reliability Physics Symposium, 273 (1979).Google Scholar
7. Gibbons, H., Pittman, J., IEEE Proceedings, Int. Reliability Physics Symposium, 257 (1979).Google Scholar
8. Keenan, J., Dobrott, R., IEEE Proceedings, Int. Reliability Physics Symposium, 261 (1979).Google Scholar
9. White, M., Serpiello, J., String, K., IEEE Proceedings, Int. Reliability Physics Symposium, 43 (1981).Google Scholar
10. Levine, S., IEEE Trans. Components, Hybrids and Manufacturing Technology, Vol.2, 4, 391 (1979).Google Scholar
11. Hsieh, C., Murliy, P., O'Brien, R.. IEEE Proceedings, Int. Reliability Physics Symposium, 38 (1981).Google Scholar
12. Morris, P., Coble, R., 86th Am. Cer. Soc. Mtg., Pittsburg, PA (1984).Google Scholar
13. Handwerder, C. A., O'Connor, M., Cannon, R., Coble, R., Processing of Metal and Ceramic Powders, Eds. German, R., Lay, K., Trans. AIME Proceedings, 3 (1981).Google Scholar
14. Blendell, J., Bowen, H., Coble, R., Ceramics Processing Research Laboratory, MIT, Report No. 13, (1982).Google Scholar
15. Handwerker, C., Morris, P., Coble, R., Gabbe, D., Howard, R., IEEE Proceedings, 34th Electronics Components Conf., New Orleans, LA (1984).Google Scholar
16. Millard, H., USGS Professional Paper 840, 61 (1976).Google Scholar
17. Millard, H., Keaten, B., J. Radisan. Chem. 72. 489 (1982).Google Scholar
18. Keenan, J., Dobrott, R., IEEE Proceedings, Int. Reliability Physics Symposium, 261 (1979).Google Scholar
19. Adams, J., Richardson, K., Economic Geology, 55, 1653 (1960).Google Scholar
20. Rubin, J., Negrych, J., 86th Am. Cer. Soc. Mtg., Pittsburg, Pa (1984).Google Scholar
21. Basic, C.E. Corporation, typical analysis.Google Scholar
22. Martin Marietta Corporation, typical analysis.Google Scholar
23. Illinois Minerals Corporation, typical analysis.Google Scholar
24. Sumitomo Corporation, typical anaysis.Google Scholar
25. Baikowski Corporation, typical analysis.Google Scholar
26. Parrish, M., S.M. Thesis, MIT (1982).Google Scholar
27. Handwerker, C., Sc. D. Thesis, MIT (1983).Google Scholar