Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:16:13.366Z Has data issue: false hasContentIssue false

Processing, Characterization, and Measurement of the Seebeck Coefficient of Bismuth Microwire Array Composites

Published online by Cambridge University Press:  01 February 2011

T.E. Huber
Affiliation:
Laser Research Laboratory, Howard University, Washington, DC 20059, USA.
P. Constant
Affiliation:
Laser Research Laboratory, Howard University, Washington, DC 20059, USA.
Get access

Abstract

We have fabricated Bi microwire array composites ranging in diameter from 10 to 50 micrometer using the method of high-pressure-injection (HPI) of the Bi melt into microchannel arrays (MCA) templates. The composites are dense, with Bi volume fraction in excess of 70 %. The parallel Bi nanowires, whose length appears to be limited only by the thickness of the host template (up to 2 mm), terminate at both sides of the composite in the Bi bulk. The individual Bi microwire crystal structure is rhombohedral, with the same lattice parameters as that of bulk Bi; the wires crystalline orientation is predominantly perpendicular to the (113) lattice plane. The transversal magnetoresistance and Seebeck effect of the wires has been measured in magnetic fields up to 0.8 Tesla and for temperatures ranging between 77 K and room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldsmid, H.J. in “Electronic Refrigeration” (Pion Limited, London, 1986), p. 7.Google Scholar
2. Goldsmid, H.J., “Thermomagnetic Phenomena” in “CRC Handbook of Thermoelectrics” edited by Rowe, D.M. (CRC Press, Boca Raton, 1994), p. 75.Google Scholar
3. Smith, G.E. et al, J. Appl. Phys. 33 841 (1962).Google Scholar
Wolfe, R. et al, Appl. Phys. Lett., 1, 5, (1962).Google Scholar
4. Goldsmid, H.J. and Volkmann, E.H., 16th ITC Proc., Heinrich, A., editor (IEEE, NJ, 1998), p. 171.Google Scholar
5. Devaux, X., Brochin, F., Dauscher, A., Lenoir, B., Martin-Lopez, R., Scherrer, H., and Scherrer, S., 16th ITC Proc, Heinrich, A., editor (IEEE Publications, Piscataway, NJ, 1998), p. 199.Google Scholar
6. Bergman, D.J., 16th ITC Proc., Heinrich, A., editor (IEEE Pub., Piscataway, NJ, 1998), p. 401.Google Scholar
7. Hicks, L.D. and Dresselhaus, M.S., Phys. Rev. B47, 16631 (1993).Google Scholar
8. Broido, D.A. and Reinecke, T.L., Mat. Res. Soc. Symp. Proc. 545 87 (1999), p. 485.Google Scholar
9 Huber, C.A. and Huber, T.E., J. Appl. Phys. 64, 6588 (1988).Google Scholar
10. Yang, F.Y., Liu, K., Hong, K., Reich, D.H., Searson, P.C., and Chien, C.L., Science 284 1335 (1999).Google Scholar
11. Bodiul, P.P. et al, Phys. Stat. Sol. (a) 53, 87 (1979)Google Scholar
12. Bodiul, P.P., Burchakov, A.N., Gitsu, D.V., and Nikolaeva, A.A., to be published (2000).Google Scholar
13. Smith, G.E. et al, Proc. 3th Int. Conf. of Phys. Semiconductors, Paris (Dunod, Paris, 1964), p. 399.Google Scholar