Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T02:02:53.140Z Has data issue: false hasContentIssue false

Process Induced Extended Defects in SiC Grown via Sublimation

Published online by Cambridge University Press:  11 February 2011

R. Yakimova
Affiliation:
Department of Physics and Measurement Technology, Linköping University, SE-58183 Linköping, Sweden
M. Syväjärvi
Affiliation:
Department of Physics and Measurement Technology, Linköping University, SE-58183 Linköping, Sweden
H. Jacobson
Affiliation:
Department of Physics and Measurement Technology, Linköping University, SE-58183 Linköping, Sweden
R. R. Ciechonski
Affiliation:
Department of Physics and Measurement Technology, Linköping University, SE-58183 Linköping, Sweden
N. Vouroutzis
Affiliation:
Physics Department, Aristotele University of Thessaloniki, 54124 Thessaloniki, Greece
J. Stoemenos
Affiliation:
Physics Department, Aristotele University of Thessaloniki, 54124 Thessaloniki, Greece
Get access

Abstract

Three possible situations of extended defect formation during sublimation growth of SiC have been investigated: a-plane growth, occurrence and effect of irregular growth interfaces, and development of elongated open volume morphological defects. While in the first case the most preferred defects are basal plane stacking faults (SFs), in other studied samples threading dislocations and high energy SFs have been revealed, these suggesting stress accumulated in the course of the growth process. Formation of morphological defects of the above character has been observed in the presence of micropipes and step flow growth mode on vicinal surfaces. Growth on atomically flat surfaces can eliminate this type of defects but the polytype uniformity is more difficult to maintain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Newey, J., Compound Semiconductors 8, 4344 (2002)Google Scholar
[2] Cree Research Inc., NC, USA.Google Scholar
[3] Muller, S.G., Glass, R.C., Hobgood, H. McD., Tsvetkov, V.F., Brady, M., Henshall, D., Jenny, J.R., Malta, D., and Carter, C.H. Jr, J. Cryst. Growth 211, 325332 (2000).Google Scholar
[4] Kordina, O., Irvine, K., Sumakeries, J., Kong, H.S., Paisley, M.J. and Carter, C.H. Jr, Materials Science Forum 264–268, 107110 (1998).Google Scholar
[5] Syväjärvi, M., Yakimova, R., Jacobsson, H., Linnarsson, M.K., Henry, A. and Janzén, E., Materials Science Forum 338–342, 165168 (2000).Google Scholar
[6] Neudeck, P.G., IEEE Trans. El. Devices 46, 6367 (1994).Google Scholar
[7] Neudeck, P.G., Huang, W. and Dudley, M., Solid State Electr. 42, 2157– 2161 (1998)Google Scholar
[8] Bergman, J.P., Lendenmann, H., Nilsson, P.Å., Lindefelt, U. and Skytt, P., Materials Science Forum 353–356, 299302 (2001).Google Scholar
[9] Korolkov, O. and Rang, T., Materials Science Forum 389–393, 941944 (2002).Google Scholar
[10] Kojima, K., Ohno, T., Suzuki, S., Senzaki, J., Harada, S., Fukuda, K., Kushibe, M., Masahara, K., Ishida, Y., Takahashi, T., Suzuki, T., Tanaka, T., Yoshida, S. and Arai, K., Materials Science Forum, 389–393, 10531056 (2002).Google Scholar
[11] Muller, S.G., Brady, M., Brixius, B., Fechko, G., Glass, R.C., Henshall, D., Hobgood, H.McD., Jenny, J.R., Leonard, R., Malta, D., Powell, A., Tsvetkov, V.F. and Carter, C.H. Jr, Materials Science Forum 389–393, 2328 (2002).Google Scholar
[12] Hobgood, D., Brady, M., Brixius, W., Fechko, G., Glass, R., Henshall, D., Jenny, J., Leonard, R., Malta, D., Muller, St.G., Tsvetkov, V. and Carter, C., Mater. Science Forum, 338–342, 38 (2000).Google Scholar
[13] Syväjärvi, M., Yakimova, R., Tuominen, M., Kakanakova-Georgieva, A., MacMillan, M.F., Henry, A., Wahab, Q., and Janzén, E., J. Crystal Growth 197, 155162 (1999).Google Scholar
[14] Burk, A. A. Jr, and Rowland, L. B., J. Crystal Growth 167, 586591 (1996).Google Scholar
[15] Kimoto, T., Miyamoto, N., and Matsunami, H., IEEE Trans. Electron Devices 46, 471476 (1999).Google Scholar
[16] Glass, R.C., Henshall, D., Tsvetkov, V.F., and Carter, C.H. Jr, Phys. Stat. Sol. (b) 202, 149162 (1997)Google Scholar
[17] Yakimova, R., Syväjärvi, M., Iakimov, T., Jacobson, H., Kakanakova-Georgieva, A., Råback, P., and Janzén, E., Applied Surface Science 184, 2736 (2001).Google Scholar
[18] Yakimova, R., Syväjärvi, M., Iakimov, T., Jacobsson, H., Råback, P., Vehanen, A., and Janzén, E., J. Crystal Growth 217, 255262 (2000).Google Scholar
[19] Sanchez, E.K., Liu, J.Q., de Graef, M., Skowronski, M., Wetter, W.M. and Dudley, M., J. Appl. Phys. 91, 11431148 (2002).Google Scholar
[20] Pirouz, P., Mater. Res. Soc. Symp. Proc. 512, 113118 (1998).Google Scholar
[21] Ha, S., Nuhfer, N.T., Rohrer, G.S., De Graef, M., Skowronski, M., J. Electron. Mater 29, L5–L8 (2000).Google Scholar
[22] Ha, S., Nuhfer, N.T., Rohrer, G.S., De Graef, M., Skowronski, M., J. Cryst. Growth 220, 308315 (2000).Google Scholar
[23] Dudley, M., Huang, X.R., Huang, W., Powell, A., Wang, S., Neudeck, P., Skowronski, M., Appl. Phys. Lett. 75, 784786 (1999).Google Scholar
[24] Takahashi, J., Ohtani, N. and Kanaya, M., J. Crystal Growth 167, 596606 (1996).Google Scholar
[25] Tuominen, M., Yakimova, R., Glass, R.C., Tuomi, T. and Janzén, E., J. Crystal Growth 144, 267276 (1994).Google Scholar
[26] Kimoto, T., Doctoral thesis “Step-Controlled Epitaxy Growth of α-SiC and Device Applications” (Kyoto University, 1995) pp.121130.Google Scholar
[27] Tuominen, M., Elisson, A., Tuomi, T., Yakimova, R., Milta, S., and Janzén, E., J. Crystal Growth 225, 2333 (2001).Google Scholar
[28] Jacobson, H., Birch, J., Yakimova, R., Syväjärvi, M., Bergman, J.P., Ellison, A., Tuomi, T., and Janzén, E., J. Applied Physics 91, 63546360 (2002).Google Scholar
[29] Schults, D., Doerschel, J., Lechner, M., Rost, H.-J., Siche, D., Wollweber, J., J. Crystal Growth 246, 3136 (2002)Google Scholar