Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:34:13.552Z Has data issue: false hasContentIssue false

Problems of Contamination Prior and During Si-Mbe

Published online by Cambridge University Press:  21 February 2011

G. Lippert
Affiliation:
Institut für Halbleiterphysik, O-1200 Frankfurt (O), W.Korsing-Str.2, Germany
D. Krüger
Affiliation:
Institut für Halbleiterphysik, O-1200 Frankfurt (O), W.Korsing-Str.2, Germany
H.H. Zeindl
Affiliation:
Institut für Halbleiterphysik, O-1200 Frankfurt (O), W.Korsing-Str.2, Germany
J. Ramm
Affiliation:
Balzers AG, FL-9496 Balzers, Liechtenstein
E. Bugiel
Affiliation:
Balzers AG, FL-9496 Balzers, Liechtenstein
H. J. Osten
Affiliation:
Balzers AG, FL-9496 Balzers, Liechtenstein
Get access

Abstract

The deposition of perfect growing layers requires an atomically clean surface. In this paper we will describe a new in situ cleaning technique which is able to reduce the temperature/time load of silicon substrates significantly.

First we will investigate the efficiency of the in situ UV/ozone cleaning immediately before deposition. Such an UV/ozone treatment lowers the level of impurities below the detection limit of in situ XPS. The known recontamination if exposing to air after ex situ cleaning is prevented by this in situ technique.

Nevertheless a significant contamination within the UHV chamber is detected by SIMS. A comparison of various UHV pumping systems (base pressure in the range of 10-8 Pa) shows the specific influence on recontamination at an atomically clean surface.

A blocking mechanism by a thin oxide layer below (0.1 ML) to avoid the growth of stacking faults within an epitaxial silicon layer was successfully tested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ishizaka, A., Nakagawa, K. and Shirarki, Y., procced. MBE-CST- 2, 183, (1982).Google Scholar
[2] Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H. and Nagasawa, Y., J.Appl.Phys., 64, 3516, (1988).CrossRefGoogle Scholar
[3] Grunthaner, P.J., Grunthaner, F.J., Fathauer, R.W., Lin, T.L., Hecht, M.H., Bell, L.D., Kaiser, W.J., Schwengerdt, F.D. and Mazur, J.H., Thin Solid Films, 183,197, (1983).Google Scholar
[4] Comfort, H.J., Garverick, L.M. and Reif, R., J.Appl.Phys., 62,3388, (1987).CrossRefGoogle Scholar
[5] Kaneko, T., Suemitsu, M. and Miyamoto, N., Jap.J. AppI.Phys., 28,2425, (1989).Google Scholar
[6] BaumgArtner, H., Fuenzalida, V. and Eisele, I., Appl.Phys. A, 43,223, (1987).CrossRefGoogle Scholar
[7] Lenssick, J.M., Hoeven, A.J., Loenen, E.J. van and Dijkkampet, D., J. Vac. Sci. Techn. B, 9,1963, (1991).Google Scholar
[8] Ramm, J., Beck, E., Ziiger, A., Domman, A. and Pixley, R.E., Thin Solid Films, 222,126, (1992).CrossRefGoogle Scholar
[9] Allen, F.G., proceed. 1. Intem. Symp. on Si-MBE(Toronto), 7, 3, (1985).Google Scholar