Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:39:43.193Z Has data issue: false hasContentIssue false

Probing Slow Atomic Motions in Metallic Glasses using NMR

Published online by Cambridge University Press:  10 February 2011

X.-P. Tang
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255;
Ralf Busch
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
William L. Johnson
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Yue Wu
Affiliation:
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255;
Get access

Abstract

We report a nuclear magnetic resonance (NMR) study of slow atomic motions in Zr-Ti-Cu- Ni-Be bulk metallic glasses. The employed 9Be spin alignment echo technique is able to probe Be motions with jump rate below 0.1 Hz. It was found that the Be motion is spatially homogeneous. The jump rate follows a perfect Arrhenius temperature dependence. The measured activation enthalpy of 1.2 eV is nearly identical to that obtained by Be diffusivity measurement using elastic backscattering (EBS); this indicates that energy barriers are the same for short and long range Be motions. The present work provides direct experimental evidences that exclude vacancy-assisted and interstitial diffusion mechanisms for Be motions in these systems. The result is interpreted in terms of the spread-out free volume fluctuation mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Busch, R., Masuhr, A., Bakke, E., and Johnson, W. L., Mater. Sci. Forum 269 547 (1998).Google Scholar
2. Geyer, U., Schneider, S., Johnson, W. L., Qiu, Y., Tombrello, T. A., and Macht, M.-P., Phys. Rev. Lett. 75, 2364 (1995); U. Geyer, W. L. Johnson, S. Schneider, Y. Qiu, T. A. Tombrello, and M.-P. Macht, Appl. Phys. Lett. 69, 2492 (1996).Google Scholar
3. Frank, W., Hbrner, A., Scharwaechter, P., and Kronmuiller, H., Mater. Sci. Eng. A 179, 36 (1994); W. Frank, J. Horvath, and H. Kronmiiller, 97, 415 (1988).Google Scholar
4. Faupel, F., Phys. Stat. Sol. (a) 134, 9 (1992); P. Klughist, K. Räitzke, S. Rehders, P. Troche, and F. Faupel, Phys. Rev. Lett. 80, 3288 (1998).Google Scholar
5. Grandjean, A. and Limoge, Y., Acta Mater. 45, 1585 (1996).Google Scholar
6. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
7. Tang, X.-P. and Wu, Y., J. Magn. Reson. 133, 155 (1998).Google Scholar
8. Tang, X.-P., Busch, R., Johnson, W. L. and Wu, Y., Phys. Rev. Lett., in press.Google Scholar
9. Spiess, H. W., J. Chem. Phys. 72, 6755 (1980).Google Scholar
10. van der Maarel, J. R. C., J. Chem. Phys. 94, 4746 (1990).Google Scholar
11. H. Kronmüller, Frank, W., and Hömer, A., Mater. Sci. Eng. A 133, 410 (1991).Google Scholar
12. Spaepen, F., Acta Metall. 25, 407 (1977).Google Scholar
13. Masuhr, A., Waniuk, T.A., Busch, R., and Johnson, W. L., to be published.Google Scholar