Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T11:00:32.787Z Has data issue: false hasContentIssue false

Probing Metal Defects in CCD Image Sensors

Published online by Cambridge University Press:  26 February 2011

William C. McColgin
Affiliation:
Eastman Kodak Company, Microelectronics Technology Division, Rochester, NY 14650-2008
J. P. Lavine
Affiliation:
Eastman Kodak Company, Microelectronics Technology Division, Rochester, NY 14650-2008
C. V. Stancampiano
Affiliation:
Eastman Kodak Company, Microelectronics Technology Division, Rochester, NY 14650-2008
Get access

Abstract

We have investigated the role of heavy metals in causing visible pixel defects in Charge Coupled Device (CCD) image sensors. Using a technique we call dark current spectroscopy, we can probe for deep-level traps in the active areas of completed image sensors with a sensitivity of 1 × 109 traps/cm3 or better. Analysis of histograms of dark current images from these sensors shows that the presence of traps causes quantization in the dark current. Different metal traps have characteristic dark current generation rates that can identify the contaminant trap. By examining the temperature dependence of the dark current generation, we have calculated the energy levels and generation cross sections for gold, iron, nickel, and cobalt. Our results show the relationship of these traps to the “white spot” defects reported for image sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miller, W.A., Wong, K.Y., and Chang, W.C. in The Physics and Chemistry of Imaging Systems, IS&T 47th Annual Conference, (1994) pp. 649651.Google Scholar
2. Chamberlain, S.G., Kamasz, S.R., Smith, C.R., Washkurak, W.D., Farrier, M.G., Tech. Dig. of the IEDM, 701 (1994).Google Scholar
3. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 1994.Google Scholar
4. Jastrzebski, L., Soydan, R., Cullen, G.W., Henry, W.N., Vecrumba, S., J. Electrochem. Soc. 134, 212 (1987); L. Jastrzebski, R. Soydan, H. Elabd, W. Henry, E. Savoye, J. Electrochem. Soc., 137, 242 (1990).Google Scholar
5. Weber, E.R., Appl. Phys. A 30, 1 (1983).Google Scholar
6. Sparks, D.R. and Chapman, R.G., J. Electrochem Soc. 133, 1201 (1986).Google Scholar
7. Domenici, M., Ferrero, G.C., and Malinverni, P., in Semiconductor Processing, ASTM STP 850, edited by Gupta, D.C. (American Society for Testing and Materials, 1984), p. 257.Google Scholar
8. Ogden, R. and Wilkinson, J.M., J. Appl. Phys. 48, 412 (1977).Google Scholar
9. van der Spiegel, J. and Declerck, G.J. Solid-State Electron. 27, 147 (1984).Google Scholar
10. Okada, Y., Okigawa, M., Kazui, K., Kitamura, Y., Furusawa, T., Opto-electronics 6, 231 (1991).Google Scholar
11. McColgin, W.C., Lavine, J.P., Kyan, J., Nichols, D.N., Russell, J.B., and Stancampiano, C.V. in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by Ashok, S., Chevallier, J., Sumino, K., and Weber, E. (Mater. Res. Soc. Proc. 262, Pittsburgh, PA, 1992) pp. 769774.Google Scholar
12. McColgin, W.C., Lavine, J.P., Kyan, J., Nichols, D.N., and Stancampiano, C.V., Tech. Dig. of the IEDM, 113 (1992).Google Scholar
13. Saks, N.S., IEEE Electron Device Lett., EDL–1, 131 (1980).Google Scholar
14. Burkey, B.C., Chang, W.C., Littlehale, J., Lee, T.H., Tredwell, T.J., Lavine, J.P., Traa, E.A., Tech. Dig. of the IEDM, 28 (1984).Google Scholar
15. Ong, D.G. and Pierret, R.F., IEEE Trans. Electron Devices, ED–22, 593 (1975).Google Scholar
16. McGrath, R.D., Doty, J., Lupino, G., Ricker, G., Vallerga, J., IEEE Trans. Electron Devices ED–34, 2555 (1987).Google Scholar
17. Schroder, D.K., IEEE Trans. Electron Devices, ED–29, 1336 (1982).Google Scholar
18. Lemke, H., Phys. Status. Solidi. (A) 76, 223 (1983).Google Scholar
19. Heiser, T., Mesli, A., Amroun, N., Mater. Sci. Forum 83-87, 173 (1992).Google Scholar
20. Tasch, A.F. Jr. and Sah, C.T., Phys. Rev. B, 1, 800 (1970).Google Scholar
21. Jaraiz, M., Dueñas, S., Vicente, J., Bailón, L., Barbolla, J., Solid-State Electron. 29, 883 (1986).Google Scholar
22. Kitagawa, H., Tanaka, S., Nakashima, H., Yoshida, M., J. Electron. Mater. 20,441 (1991).Google Scholar
23. Yau, L.D. and Sah, C.T., Appl. Phys. Lett. 21, 157 (1972).Google Scholar
24. Wünstel, K. and Wagner, P., Appl. Phys. A 27, 207 (1982).Google Scholar
25. Lemke, H., Phys. Status. Solidi. (A) 75, 473 (1983).Google Scholar
26. Kimerling, L.C. and Benton, J.L., Physica 116B, 297 (1983).Google Scholar
27. Zoth, G. and Bergholz, W., J. Appl Phys. 67, 6764 (1990).Google Scholar
28. Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicond. Sci. Technol. 7, A185 (1992).Google Scholar
29. Lagowski, J., Edelman, P., Kontkiewicz, A.M., Milic, O., Henley, W., Dexter, M., Jastrzebski, L., Hoff, A.M., Appl. Phys. Lett. 63, 3043 (1993).Google Scholar
30. Mishra, K. and Falster, R., ECS Extended Abstracts 92-2, 632 (1992).Google Scholar
31. Mishra, K. (private communication).Google Scholar
32. Mishra, K. in The Role of Point Defects and Defect Complexes in Silicon Device Processing, edited by Sopori, B.L. (Third NREL Workshop, Golden, CO, 1993), p. 57.Google Scholar
33. Kikuchi, H., Agarwal, A., Koveshnikov, S., and Rozgonyi, G.A., in The Degradation of Electronic Devices due to Device Operation as well as Crystalline and Process-Induced Defects, edited by Queisser, H.J., Chung, J.E., Bean, K.E., Shaffner, T.J., and Tsuya, H. (Electrochem. Soc. Proc. 94-1, Pennington, NJ, 1994) pp. 298303.Google Scholar