No CrossRef data available.
Article contents
Principal Residual Strains as A function of Depth for Sputter Deposited Mo Thin Films
Published online by Cambridge University Press: 21 February 2011
Abstract
Traditionally, the magnitude of the stress in a thin film is obtained by measuring the curvature of the film-substrate couple; however, these techniques all measure the average stress throughout the film thickness. On a microscopic level, the details of the strain distribution as a function of depth through the thickness of the film can have important consequences in governing film quality and ultimate morphology. A new method for determining the magnitude of principal strains (strain eigenvalues) as a function of x-ray penetration depth using grazing incidence x-ray scattering for a polycrystalline thin film will be described. Results are reported for two Mo metallizations ˜ 500 Å and ˜1000 Å thick sputtered onto Si {100} substrates. The magnitude of the principal strains at several penetration depths was accomplished by an analysis of the diffraction peak shifts of at least six independent {hkl} scattering vectors from the Mo thin films. An out-of-plane strain gradient was identified in both Mo films and the strain eigenvalues were found to be anisotropic in nature. This new methodology should work with a variety of thin films and hence would provide quantitative insight into the evolution of thin film microstructure.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995