Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T16:22:50.672Z Has data issue: false hasContentIssue false

Pressure Sensing with PVDF Gated AlGaN/GaN High Electron Mobility Transistor

Published online by Cambridge University Press:  31 January 2011

Sheng-Chun Hung
Affiliation:
[email protected], University of Florida, Chemical Engineering, Gainesville, Florida, United States
Byung Hwan Chu
Affiliation:
Chih-Yang Chang
Affiliation:
[email protected], University of Florida, Chemical Engineering, Gainesville, Florida, United States
Chien Fong Lo
Affiliation:
[email protected], University of Florida, Chemical Engineering, Gainesville, Florida, United States
Ke Hung Chen
Affiliation:
[email protected], University of Florida, Chemical Engineering, Gainesville, Florida, United States
S. J. Pearton
Affiliation:
[email protected], Univ.Florida, Materials, Gainesville, Florida, United States
Amir Dabiran
Affiliation:
[email protected], SVT Associates, Eden Prairie, Minnesota, United States
P. P. Chow
Affiliation:
[email protected], SVT Associates, Eden Prairie, Minnesota, United States
G. C. Chi
Affiliation:
[email protected], National Central University, Jhong-Li, Taiwan, Province of China
F. Ren
Affiliation:
[email protected], University of Florida, Chemical Engineering, Gainesville, Florida, United States
Get access

Abstract

AlGaN/GaN high electron mobility transistors (HEMTs) with a polarized Polyvinylidene difluoride (PVDF) film coated on the gate area exhibited significant changes in channel conductance upon exposure to different ambient pressures. The PVDF thin film was deposited on the gate region with an inkjet plotter. Next, the PDVF film was polarized with an electrode located 2 mm above the PVDF film at a bias voltage of 10 kV and 70 °C. Variations in ambient pressure induced changes in the charge in the polarized PVDF, leading to a change of surface charges on the gate region of the HEMT. Changes in the gate charge were amplified through the modulation of the drain current in the HEMT. By reversing the polarity of the polarized PVDF film, the drain current dependence on the pressure could be reversed. Our results indicate that HEMTs have potential for use as pressure sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mortet, V., Petersen, R., Haenen, K. and D'Olieslaeger, M., IEEE Ultrasonics Symposium, 1456 (2005).Google Scholar
2 Ko, S. C., Kim, Y. C., Lee, S. S., Choi, S. H., Kim, S. R., Sens. Actuators B 103, 130 (2003).Google Scholar
3 Greaves, R. and Sawyer, G., Phys. Technol, Vol 14, 15 (1983).10.1088/0305-4624/14/1/I05Google Scholar
4 Kim, E. S. and Muller, R. S., IEEE, IEDM 86, 8 (1986).Google Scholar
5 Odon, A., Measurement Science Review, 3, 3, 111, (2003).Google Scholar
6 Shirinov, A.V. and Schomburg, W.K., Sensors & Actuators A, 142, 48 (2008).Google Scholar
7 Chertow, G. M., Levy, E. M., Hammermeister, K. E., Grover, F., Daley, J., Amer. J. Med. 104, 343 (1998).Google Scholar
8 Zhang, A. P., Rowland, L. B., Kaminsky, E. B., Tilak, V., Grande, J. C., Teetsov, J., Vertiatchikh, A. and Eastman, L. F., J.Electron.Mater. 32 388 (2003).10.1007/s11664-003-0163-6Google Scholar
9 Kang, B. S., Wang, H.T., Ren, F., Pearton, S. J., Morey, T. E., Dennis, D. M., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., and Linthicum, K. J., Appl. Phys. Lett. 91, 252103 (2007).Google Scholar
10 Ambacher, O., Eickhoff, M., Steinhoff, G., Hermann, M., Gorgens, L., Werss, V., Baur, B., Stutzmann, M., Neuterger, R., Schalwig, J., Muller, G., Tilak, V., Green, B., Schafft, B., Eastman, L. F., Bernadini, F., and Fiorienbini, V., Proc. ECS 02-14, 27 (2002).Google Scholar
11 Kang, B. S., Wang, H.T., Lele, T. P., Tseng, Y., Ren, F., Pearton, S. J., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., and Linthicum, K. J., Appl. Phys. Lett. 91, 112106 (2007).10.1063/1.2772192Google Scholar
12 Neuberger, R., Muller, G., Ambacher, O. and Stutzmann, M., Phys. Stat. Soli. A185, 85 (2001).10.1002/1521-396X(200105)185:1<85::AID-PSSA85>3.0.CO;2-U3.0.CO;2-U>Google Scholar
13 Schalwig, J., Muller, G., Ambacher, O. and Stutzmann, M., Phys. Stat. Solidi A185, 39 (2001).10.1002/1521-396X(200105)185:1<39::AID-PSSA39>3.0.CO;2-G3.0.CO;2-G>Google Scholar
14 Wang, H.T., Kang, B. S., Ren, F., Pearton, S. J., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., and Linthicum, K. J., Appl. Phys. Lett. 91, 222101 (2007).10.1063/1.2815931Google Scholar
15 Steinhoff, G., Hermann, M., Schaff, W. J., Eastman, L. F., Stutzmann, M. and Eickhoff, M., Appl. Phys. Lett., 83, 177 (2003).10.1063/1.1589188Google Scholar
16 Kang, B. S., Wang, H.T., Ren, F., Gila, B. P., Abernathy, C. R., Pearton, S. J., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., and Linthicum, K. J., Appl. Phys. Lett. 91, 012110 (2007).Google Scholar
17 Steinoff, G., Purrucker, O., Tanaka, M., Stutzmann, M. and Eickoff, M., Adv. Funct. Mater. 13, 841 (2003).10.1002/adfm.200304397Google Scholar
18 Steinhoff, G., Baur, B., Wrobel, G., Ingebrandt, S., Offenhauser, A., Dadgar, A., Krost, A., Stutzmann, M. and Eickhoff, M., Appl. Phys. Lett. 86, 033901 (2005)Google Scholar
19 Hung, S. C., Wang, Y. L., Hicks, B., Pearton, S. J., Ren, F., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., Linthicum, K. J. and Chi, G. C., Electrochem. Solid-state Lett., 11, H241 (2008)Google Scholar
20 Kang, B. S., Wang, H. T., Ren, F. and Pearton, S. J., J. Appl. Phys., 104, 031101 (2008)Google Scholar
21 Chu, B. H., Kang, B. S., Ren, F., Chang, C. Y., Wang, Y. L., Pearton, S. J., Glushakov, A. V., Dennis, D. M., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L. and Linthicum, K. J., Appl. Phys. Lett., 93, 042114 (2008)10.1063/1.2966158Google Scholar
22 Chang, C. Y., Kang, B. S., Wang, H. T., Ren, F., Wang, Y. L., Pearton, S. J., Dennis, D. M., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L. and Linthicum, K. J., Appl. Phys. Lett., 92, 232102 (2008)Google Scholar
23 Hung, S. C., Wang, Y. L., Hicks, B., Pearton, S. J., Dennis, D. M., Ren, F., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L., Linthicum, K. J. and Chi, G. C., Appl. Phys. Lett., 92, 193903 (2008)Google Scholar
24 Chen, K. H., Kang, B. S., Wang, H. T., Lele, T. P., Ren, F., Wang, Y. L., Chang, C. Y., Pearton, S. J., Dennis, D. M., Johnson, J. W., Rajagopal, P., Roberts, J. C., Piner, E. L. and Linthicum, K. J., Appl. Phys. Lett., 92, 192103 (2008)10.1063/1.2926656Google Scholar
25 Kang, B.S., Wang, H.T., Ren, F. and Pearton, S.J., J. Appl. Phys. 104, 031101 (2008).10.1063/1.2959429Google Scholar
26 Gregorio, Rinaldo Jr and Nociti, Nadia Chaves Pereira de Souza J. Phys. D: Appl. Phys. 28 (1995) 432436.Google Scholar
27 Smith, W. F. and Hashemi, J., Foundation of Material Science and Engineering, 4th Ed., McGraw Hill, New York, 2006.Google Scholar