Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:46:12.883Z Has data issue: false hasContentIssue false

Pressure Dependence of Photoluminescence of Oligothiophenes

Published online by Cambridge University Press:  10 February 2011

L. Rossi
Affiliation:
Istituto Nazionale per la Fisica della Materia (Italy). Dipartimento di Fisica “A. Volta,”Università di Pavia, Pavia (Italy).
W. Graupner
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Graz (Austria)
R. Resel
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Graz (Austria)
F. Meghdadi
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Graz (Austria)
G. Leising
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Graz (Austria)
F. Sannicolo'
Affiliation:
Dipartimento di Chimica Organica ed Industriale, Università di Milano, Milano (Italy).
T. Benincori
Affiliation:
Dipartimento di Chimica Organica ed Industriale, Università di Milano, Milano (Italy).
G. Lanzani
Affiliation:
Istituto Nazionale per la Fisica della Materia (Italy). Istituto di Matematica e Fisica, Università di Sassari, Sassari (Italy).
R. Tubino
Affiliation:
Istituto Nazionale per la Fisica della Materia (Italy). Dipartimento di Scienze dei Materiali, Università di Milano, Milano (Italy).
Get access

Abstract

We report on the nature of emitting states in two different quaterthiophenes: the unsubstituted quaterthiophenes (T4) and a bridged T4 (T4B), where the bridging have been realized by introducing a second bond between the two central thiophene rings. The effect of the chemical bridging on the photophysics of these compounds have been studied via photoluminescence measurements under hydrostatic pressure, which permit to clarify the influence of interchain coupling, conformational effects and intrachain structural changes on the optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koezura, H., Tsumura, A., Fuchigami, H. and Kuramoto, K., Appl. Phys. Lett. 62, p. 1794 (1992), 901Google Scholar
2. Gamier, F., Hajlaoui, R., Yassar, A. and Srivastava, P., Science 265, p. 1684 (1994).Google Scholar
3. Dodabalapur, A., Torsi, L. and Katz, H.E., Science 268, p. 270 (1995).Google Scholar
4. Bradley, D.D.C., Synth. Met. 54, p. 401 (1993).Google Scholar
5. Brenna, M.E., PhD Thesis, University of Milan, Italy (1993).Google Scholar
6. Egelhaaf, H.-J. and Oelkrug, D., Proc. SPIE 2363, 403 (1995).Google Scholar
7. Kanemitsu, Y., Shimizu, N., Suzuki, K., Shiraishi, Y., and Kuroda, M., Phys. Rev. B 54, p. 2198 (1996).Google Scholar
8. Bree, A., Katagiri, S., and Suart, R., J. Chem. Phys. 44, p. 1788 (1966).Google Scholar
9. Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals, Clarendon, Oxford, 1982, pp. 2527.Google Scholar
10. Akimichi, H., Waragai, K., Hotta, S., Kano, H., and Sakaki, H., Appl. Phys. Lett. 58, p. 1500 (1991).Google Scholar
11. Fichou, D., Horovitz, G., Xu, B., and Gamier, F., Synth. Met 39, p. 243 (1990).Google Scholar
12. Graupner, W., Eder, S., Petritsch, K., Leising, G., and Scherf, U., Synth. Met. 84, p.507 (1997).Google Scholar
13. Webster, S. and Batchelder, D.N., Polymer 37, p. 4961 (1996).Google Scholar
14. Moses, D., Feldblum, A., Ehrenfreund, E., Heeger, A.J., Chung, T.C., and MacDiarmid, A.G., Phys. Rev. B 26, p. 3361 (1982).Google Scholar
15. Hess, B.C., Kanner, G.S., and Vardeny, Z., Phys. Rev. B 47, p. 1407 (1993).Google Scholar
16. Lacey, R.J., Batchelder, D.N., and Pitt, G.D., J. Phys. C: Solid State Phys. 17, p. 4529 (1984).Google Scholar